
Visualisierung
hochdimensionaler Daten mit

hierarchischer Gruppierung von
Teilmengen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Masterstudium Visual Computing

eingereicht von

David Pfahler
Matrikelnummer 1126287

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Univ.-Doz. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr.techn. Harald Piringer

Dipl.-Ing. Dr.techn. Thomas Mühlbacher

Wien, 1. Oktober 2019
David Pfahler Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Visualizing High-Dimensional
Data with Hierarchically

Aggregated Subsets

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Master Visual Computing

by

David Pfahler
Registration Number 1126287

to the Faculty of Informatics
at the TU Wien

Advisor: Ao.Univ.Prof. Univ.-Doz. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. Dr.techn. Harald Piringer

Dipl.-Ing. Dr.techn. Thomas Mühlbacher

Vienna, 1st October, 2019
David Pfahler Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

David Pfahler
Breyerstraße 7/1/5 2500 Baden

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Oktober 2019
David Pfahler

v





Acknowledgements

I would first like to thank my supervisor Dr. Harald Piringer of the VRVis Research
Center1 (VRVis) in Vienna. He provided scientific guidance and always suggested helpful
improvements. Second, I wish to thank my official supervisor Meister Edi Gröller from
TU Wien for his encouraging feedback and great support. Furthermore, I would like to
acknowledge Dr. Thomas Mühlbacher of VRVis for reviewing and supporting me during
the technical development of this thesis.

On a personal level, I must express my very profound gratitude to my parents for
providing unfailing support and continuous encouragement throughout my years of study
and through the process of research and writing this thesis.

1VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, www.vrvis.at

vii

www.vrvis.at




Kurzfassung

Die Anzahl der installierten Sensoren zur Erfassung von Daten, z. B. Stromzähler in
Smart Grids, nimmt rasant zu. Diese riesige Menge an gesammelten Daten muss von
den Übertragungsnetzbetreibern analysiert und überwacht werden. Diese Aufgabe wird
durch Visual Analytics Techniken unterstützt, aber traditionelle multidimensionale Da-
tenvisualisierungstechniken skalieren nicht sehr gut für hochdimensionale Daten. Der
Hauptbeitrag dieser Arbeit ist ein Rahmenwerk, um solche hochdimensionalen Daten
effizient zu inspizieren und zu vergleichen. Die zentrale Idee ist es, die Daten durch die Se-
mantik der zugrundeliegenden Datendimensionen in Gruppen zu zerteilen. Fach-Experten
kennen die Metainformationen der Daten und können diese Gruppen in eine Hierarchie
strukturieren. Das System berechnet aus den Gruppen statistische Eigenschaften, welche
dann visualisiert werden. Diese visuellen Repräsentationen können verwendet werden,
um die analytischen Aufgaben des Benutzers zu unterstützen.
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Abstract

The number of installed sensors to acquire data, for example electricity meters in smart
grids, is increasing rapidly. The huge amount of collected data needs to be analyzed and
monitored by transmission-system operators. This task is supported by visual analytics
techniques, but traditional multi-dimensional data visualization techniques do not scale
very well for high-dimensional data. The main contribution of this thesis is a framework
to efficiently examine and compare such high-dimensional data. The key idea is to divide
the data by the semantics of the underlying dimensions into groups. Domain experts are
familiar with the meta-information of the data and are able to structure these groups into
a hierarchy. Various statistical properties are calculated from the subdivided data. These
are then visualized by the proposed system using appropriate means. The hierarchy and
the visualizations of the calculated statistical values are displayed in a tabular layout.
The rows contain the subdivided data and the columns visualize their statistics. Flexible
interaction possibilities with the visual representation help the experts to fulfill their
analysis tasks. The tasks include searching for structures, sorting by statistical properties,
identifying correlations of the subdivided data, and interactively subdivide or combine
the data. A usage scenario evaluates the design of the framework with a data set of the
target domain in the energy sector.
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CHAPTER 1
Introduction

In the year 1971 the first commercial microprocessor chip, the Intel 4004, was launched.
Thanks to the silicon technology it contained 2,300 transistors [FK70]. The improvement
of this technology led to an exploding growth of computing power and storage capacities
(Moore’s law [Moo65]). With these improvements the speed of data generation has
increased every year. This increment of raw and unfiltered data concerns multiple
application areas. For example, the world’s largest particle accelerator, the Large
Hadron Collider (LHC), generates a petabyte (PB) (1015 bytes) of unfiltered data per
second [Bru11].

In addition to the increase of data generation per device, the number of devices is
rapidly increasing. For example, in the energy sector smart metering devices are installed
to measure energy consumption. Table 1.1 shows the fast growth of data in this area.
If the energy provider collects data from one million smart metering devices, every 15
minutes, for a year and a single data record is assumed to have 5 kilobyte (kB), the
generated data table would have a volume of 2.9 PB [ZFY16].

Traditional data processing applications are not designed to deal with this amount
of data. Problems may be the computational complexity or the physical memory of
the hardware. Even if the application or hardware would be able to handle this, the
user who is analyzing the data, is no longer able to look at and analyze the whole
input data. This problem is called information overload and leads to a reduced quality

Table 1.1: The potential amount of generated data from 1 million of smart meter devices
in a year. A data record is assumed to have 5 kB. The aggregated data volume is given
in terabyte (TB) [ZFY16]

Collection Fequency 1/day 1/hour 1/30 min 1/15 min
Data record (billion) 0.37 8.75 17.52 35.04
Volume of data (TB) 30.42 730 1460 2920
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1. Introduction

of the decision-making process for tasks of data analysts. Typically, this is caused by
parts of the data being irrelevant for the particular task or inappropriately processed or
presented [KAF+08]. One approach to overcome the information overload is information
visualization. The data is mapped to a visual form, which then can be interpreted
by a human in a fast and intuitive way [Kei02]. An orthogonal approach is to utilize
automated data analysis methods and tools. These tools outperform the human analysts
if the task and problem is well-defined and well-understood.

Defining a problem can become very cumbersome and difficult for complex data and
tasks. While trying to understand it in more detail, the problem definition may change.
Hence, a combination of automated data analysis methods and information visualization
is considered, which is called visual analytics. Whereby the strengths of both, the human
processing of visualizations and the electronic data processing are utilized to overcome
the information overload.

1.1 Guiding Data Example: Photovoltaic Production

In the energy sector very diverse data are collected. These can include customer, electricity
generation, or electricity consumer data. The generation and consumer data are numerical
time series from different sensors.

This thesis uses a data set from this domain that is employed in all examples. It
contains time series from various meteorological sensors and power Production Values
from 95 photovoltaic power plants (PV01-PV95). The meteorological data consists of
hourly measurements from 20 weather stations of global radiation and temperature, as
well as humidity, wind speed, gust speed, wind direction, air pressure, and dew point for
four weather stations.

Fig. 1.1 shows a single time series of a photovoltaic power plant. The PV of the first
plant are shown for a whole year. In Fig. 1.1b one can see the values for a single day
(02.10.2010).

The time series are from real, but anonymized, data measurements in the period
May 2010 to April 2011. They are chosen for this thesis, because they contain multiple
time series from diverse sources with meta-informations. The meta-information contains
the sensors of the data dimensions (see above), the location of the photovoltaic power
plants and the regions of the meteorological sensors. By grouping the data into these
meta-informations a hierarchy can be created. For the example data set this may be
grouping the time series by their sensors, by their location or by both.

1.2 Motivation

In various application domains often recurring and thereby relevant user tasks are
exploration overview tasks. Examples include comparing outputs of multi-run simulations
in the automotive sector or monitoring multiple quality indicators of products in advanced
manufacturing.
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1.2. Motivation

a

b

Figure 1.1: Photovoltaic power Production Values (PV). (a) shows the PV_01 for the
whole available time interval. (b) shows a single day.

This thesis is motivated by Hierarchical Data Overview (HDO) tasks in the energy
sector — a domain where the amount of acquired data is increasing rapidly. Power
generation, power consumption, and meteorological quantities are constantly measured
by the providers, creating a vast number of time series. The guiding data example shows
such data (Section 1.1).

The number of sensors will grow even further with the advent of smart meters. EU
member states are required to equip at least 80% of their consumers with smart meter
devices until the year 2020 [oEU14]. The transmission-system operators need to analyze
and process this acquired time series. It is inefficient or even impossible for them to
inspect every single acquired time series.

There may be very different questions the system operators of the energy sector want
to answer with the data. Different methods may help answer these questions:

3



1. Introduction

• Finding trends, groups, modalities and outliers, helps the operator understand the
structure of the data.

• Statistics are used to score interesting features of the measured sensors. Ranking
them by these features helps finding the interesting ones.

• In order to gain control of the amount of data, it is useful to group the time series
into contiguous groups and structure them hierarchically.

• Through these analyses of the users, they could have derived some conclusions from
the data. Additional analysis is needed to confirm them. By interactively exploring
the data further and tuning the parameterization, more detailed information may
be obtained.

By creating a framework that supports these methods the efficiency of decision making
for transmission-system operators can be improved.

1.3 Contributions

The primary contribution of this thesis is the validated design of a framework for
analyzing and comparing high-dimensional data. The key idea is to partition the data
by meta-information. For each resulting subset statistics are computed. The statistics
are differentiated into types, which are central tendencies, dispersions and frequency
distributions. Depending on the type of the statistic different visualization techniques for
the computed values are used. These are then shown in a tabular layout.

In the energy sector, various data sensors are placed in the same location or share
the same type, for example, temperature sensors. This meta-information of the data
is familiar to domain experts and allows them to analyze and compare the data in a
more intuitive way. An example task would be the comparison of multiple time series of
power consumption at multiple locations, where only locations are compared and power
consumption of the different sensors within a location are combined. This approach
scales better than comparing every single data dimension like in the Rank By Feature
Framework (RBFF) [SS05] or comparing every data record like with parallel coordinates
or scatterplot matrices. Still, the user is able to flexibly drill-down on demand in order
to explore the details of the different dimensions.

1.4 Structure of the Thesis

The design process of the HDO visualization can be structured into development phases.
The design-study methodology by Sedlmair, Meyer and Munzner is used as guideline, to
identify the phases [SMM12]. Fig. 1.2 shows the nine involved phases and classifies them
into three top-level categories. These phases are also used to structure the thesis.
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1.4. Structure of the Thesis

PRECONDITION CORE ANALYSIS

learn implementwinnow cast discover design deploy reflect write

22

Figure 1.2: The nine-stage design-study methodology-framework classifies the design
process into three top-level categories. Whereby the process is not a linear approach, but
an iterative and dynamic process [SMM12].

1.4.1 Precondition Phase

In the precondition phase the related work of HDO tasks was studied to learn about
existing approaches (see Chapter 2). The user group of transmission-system operators
was identified as promising collaborators.

1.4.2 Core Phase

In the core phase this user group was consulted to identify their tasks and based on
these tasks the design goals were established (see Chapter 3). Additionally, the high-
dimensional data of the application area (the energy sector) were analyzed and abstracted
into a data model (see Chapter 4).

Based on these goals and the data the HDO framework was designed. This design
includes on the one hand the visual representations (see Chapter 5) and on the other hand
the interaction techniques (see Chapter 6). In the end of the core phase the framework
was implemented and integrated into the existing software Visplore (see Chapter 7).

1.4.3 Analysis Phase

The last phase focusses on the reflection of the work done. In order to present the results
of the design process, a usage scenario was written, which describes the analysis of a
smart-meter data set on the basis of the implemented visualization (see Chapter 8).
Additionally, the lessons learned are discussed and possible extensions of the framework
are presented (see Chapter 9). To conclude the analysis phase this thesis was written as
a documentation of the design process.

5





CHAPTER 2
Related Work

A vast number of scientific and application areas are confronted with high-dimensional
data sets. Visualization is a method to analyze this data.

This chapter provides an introduction to visualization (Section 2.1), with the focus
on information visualization of multi-dimensional data, like parallel coordinates (Sec-
tion 2.1.4) or scatterplot matrices (Section 2.1.4). These techniques are well suited for
exploring a few data dimensions [Mun14]. If the number of data dimensions increases,
these techniques fail, because of the limitations of our visual system, visual clutter, and
technical challenges [FP02].

One possibility to overcome these problems is to integrate automatic data analysis
methods into the visual data exploration process. Section 2.2 introduces visual analytics,
which is an effective way to understand and process high dimensional data [KKE10].

To maintain the scalability of visualization techniques, the reduction of displayed
information is needed [Pir11]. Section 2.3 presents techniques of reducing information
on a data record and on a data dimension level and introduces different previous visual
analytics frameworks for overview visualizations.

The common task of relating one data record to anotherone is essential for exploring
data in an information visualization (see Section 2.1.1). Section 2.4 presents different
techniques of comparing visualizations.

2.1 Introduction to Visualization

The graphic representation of information has been used to communicate messages since
the early evolution of mankind (e.g., cave paintings). Early data visualizations occurred
in the form of maps and diagrams to aid in navigation and exploration [Fri08]. In the
field of computer science the term visualization refers to a technique for creating images,
diagrams or animations of not immediately visible data to communicate an idea or a
message [KDHL08].

7



2. Related Work

The created, computer supported, interactive, visual representations are used to
amplify human cognition. The human visual system and brain capabilities are then
utilized for hypothesis building and reasoning [CMS99]. Coupling the strength of the
human visual system with interaction techniques and the visual representations of data,
supports the understanding and decision-making process.

Visualization is subdivided into three fields, scientific visualization, information
visualization and visual analytics. The separation into the three fields is hard, because
they share common goals and techniques. Possible distinctions are the used data and
mappings.

Scientific visualization: The underlying data of the graphical representations in
scientific visualization involves information with an inherent physical component [TM04].
Hence, the object space of the data and its mapped visual representations is 1D, 2D,
3D, or 4D. Application areas of scientific visualization are flow visualization, volume
visualization and others.

Information visualization: In contrast to the spatial environment of scientific vi-
sualization, information visualization depicts abstract data with multiple dimensions.
Examples for abstract data are business data, social networks, and process data.

Hence there exists no spatial mapping from real-world data to the virtual world,
additional steps have to be performed to create a visualization. To be able to map
the multi-dimensional data to the 2D or 3D screen space a visual mapping to a visual
metaphor has to be created [GP01].

Additionally, standard diagrams, such as x-y plots and bar charts, are not flexible
enough for multi-dimensional data. To overcome these problems new diagrams were
developed (see Section 2.1.4).

Visual analytics: A definition of visual analytics is “the science of analytical reasoning
supported by the interactive visual interface” [Tho05]. This field of research differs from
information visualization in the preceding data analysis methods, such as statistical
calculations or data mining. Furthermore, the focus is on the interaction between man
and computer. The scope of this thesis focuses on the design of an visual analytics
technique and thus this field of research is discussed in more detail in Section 2.2.

An approach to design a novel technique is to start with a problem characterization
and abstraction [SMM12]. First the domain problem is characterized by an abstraction of
the tasks and second the goals of the approach for dealing with the problem are identified.
In the subsequent section the tasks and goals of visualizations in general are introduced.
This provides visual-design guidelines for creating an information-visualization application.
In Chapter 3 a domain specific problem is characterized through its tasks and goals.

8



2.1. Introduction to Visualization

2.1.1 Tasks

The visual information seeking mantra of Shneiderman (“Overview first, zoom and filter,
then details-on-demand” [Shn96]) provides an abstract task analysis for designing an
information visualization technique called the Task by Data Type Taxonomy (TDTT).
Whereby the tasks of the visual information seeking mantra are enhanced by the tasks
relate, history, and extract. These tasks apply to multiple defined data types, but have
to be adjusted for the specific properties of seven identified data types: 1D-, 2D-, 3D-,
multi-dimensional, temporal, tree, and network data [Shn96]. This thesis focuses on
multi-dimensional data, thus examples for this type are given in the description of the
identified abstract tasks of the TDTT.

Overview: To get an initial understanding of the data set the whole context of the data
needs to be represented on the screen space. This helps to see global patterns and
structures in the data, like clusters or outliers [CC05].

Zoom and Filter: Since the screen space is limited, it is necessary to exclude unimpor-
tant information in the overview representation. Zooming into the representation or
filter away unimportant information, helps to overcome this limitation. Examples
for zooming techniques are geometric, fisheye, and semantic zooming.

Details-on-demand: Often it is impractical to change the visual representation (e.g., by
zooming or filtering), but it is still necessary for the user to be able to access every
detail, even if it is not visualized. The interaction technique details-on-demand
provides this detailed information only when the user requests it. A well-known
example of details on demand are tooltips, which are small pop-up windows that
appear when the mouse pointer is moved over a specific area.

Relate: Visualizing the relation of a data record to another helps the user to find
similarities. A technique that emphasize the relation is called brushing and linking.
Whereby the change of a filter in one representation reflects to all representations
that encode the same affected data records.

History: To compare the current state of the analysis of a user with a previous state,
it is necessary to step back and forth in the history of changes. Additionally, it
enables the recovering of errors made by the user.

Extract: After the data was analyzed and a set of interesting data records was obtained,
the user wants to extract and share these insights. For example by saving the set
as a file.

This thesis focuses on the Overview task of the visual information seeking mantra.
However, as Shneiderman describes, all other tasks are also relevant for designing an
effective information visualization technique and are considered in this thesis as well.

9



2. Related Work

2.1.2 Goals

Keim identified three main goals when visually exploring data sets [Kei97].

Exploratory analysis: Users explore the data and information to get new (unexpected,
profound) insights. The results of this search is used to generate an initial hypothesis.
This includes tasks like finding structures, for example, trends, groups, modalities,
or outliers [Yu77].

Confirmatory analysis: If the user found a hypothesis, she wants to verify or reject it.
To support this process, the visualization design guides the exploration of the user.

Presentation: To communicate the found insights, the user wants to illustrate them.
This involves the selection and export of an appropriate visualization technique,
which is intuitive and self explanatory for the target audience.

The scope of this thesis is the exploration of the data, whereby the exploratory and
the confirmatory analysis are desired goals in the proposed visualization design.

2.1.3 Visualization Pipeline

Fig. 2.1 shows a reference model for visualization. The model is often referred to as the
visualization pipeline, whereby it is only a simplification of an information visualization
system. The individual stages can be used to simplify the discussion of such systems and
to compare them. It describes the steps to generate an image from the memory-stored
data and where the user may interact with these steps [CMS99]:

Data transformations map the raw data to data tables. This includes reducing the
data and including meta-information.

Visual mappings transform data tables into visual structures. Standard visualizations
define a visual mapping for every data dimension, which maps every data record of
this dimension to its visual representation. This data record is called a visual data
record. For example, if a data dimension is assigned to the x-axis of a scatterplot,
every data record of this dimension is mapped to a specific x-position.

View transformations create views of the visual structures. Since interactive visual-
izations are not static, it is possible to modify and augment the composition of
the visual structures over time. Common view-transformation techniques include
location probes (e.g., tooltips), viewpoint controls (e.g., zoom, pan, and clip) and
distortion (e.g., Fish-eye views [Fur86])

The information visualization system described in this thesis may also be simplified
to this reference model.

10
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Figure 2.1: The reference model for visualization describes mappings from the raw data
to a visual form to be analyzed by the human observer, who is able to interact with the
mappings [CMS99].

2.1.4 Multi-Dimensional Visualization Techniques

The TDTT [Shn96] already mentioned that it is necessary to adjust the visualization
technique to the used data type, to be able to support the tasks of the user. As this
thesis focuses on multi-dimensional data, this section introduces two traditional and
commonly used multi-dimensional visualization techniques: The scatterplot matrix and
the parallel coordinates.

There are far more visualization techniques for multi-dimensional data, that can
be used for different applications [Mun14]. These include Glyphs [BKC+13], Star
Plots [CCK+83], or Chernoff faces [Che73].

Scatterplot Matrix

A scatterplot matrix [C+85], lays out scatterplots for all pairs of data dimensions as a
matrix. The plots of one column share a common x-axis and the plots of one row share
a common y-axis. One task that this technique is able to support is the determination
if multiple variables have correlations between each other. Fig. 2.2 shows a scatterplot
matrix with five data dimensions. As the linear aligned visual data records between the
dimensions indicate, the statistical correlation between Gust Speed 01 and Wind Speed
01 is significantly high (0.962 Pearson Correlation [Pea95]).

When comparing p variables the matrix shows exactly p(p − 1)/2 projections of the
data. The quadratic dependency suggests that this visualization does not scale well for
many variables, as for every new variable significantly more visual space is needed.

Parallel Coordinates

Another technique to visualize and analyze multi-dimensional data are parallel coordi-
nates [ID90]. The axes of the data dimension are drawn in parallel and a data record is

11



2. Related Work

represented as a polyline intersecting the parallel axes at the position of the coordinate
of the corresponding dimension.

Parallel polylines between two parallel axes indicate a positive correlation between
these two dimensions. If the polylines cross randomly, it can be assumed that no
correlation exists. If the polylines cross intersect, the correlation is negative [Ins97].
Fig. 2.3 shows parallel coordinates with the same dimensions as Fig. 2.2. One can
observe the parallel lines between Wind Speed 01 and Gust Speed 01, whereby a positive
correlation can be assumed.

When adding another variable, only one more axis is added to the visualization.
Therefore, in contrast to the scatterplot matrix, the used visual space scales on a linear
basis to the number of observed variables.

A visualization method that displays individual data values cannot scale for large
amounts of data [FWR99]. To resolve this issue, hierarchical aggregation methods
were developed for parallel coordinates. One hierarchical aggregation method is called
hierarchical clustering. Only aggregated information is displayed in the polylines of the
parallel coordinates [FWR99]. This reduces the number of visual elements. Through
manual interaction, a user can then split clusters and further explore the aggregated
data. This technique can be generalized into a framework and then used by multiple
visualization types [YWR03].

Comparing multiple connected small visualizations is a common technique to observe
several dimensions and gain insight into relations between them. This is described in
detail in Section 2.4.

2.2 Visual Analytics

The TDTT described the overview of the data as the first task a user requires of an infor-
mation visualization [Shn96]. However, traditional multi-dimensional data visualization
techniques, like parallel coordinates (see Fig. 2.3) or scatterplot matrices (see Fig. 2.2),
do not scale very well for high-dimensional data [KKE10, YWR02]. This leads to the
need of analyzing the unfiltered and raw high-dimensional data before the interesting
information can be presented to the analyst [KMSZ06]:

“Visual analytics combines automated analysis techniques with interactive visual-
izations for an effective understanding, reasoning and decision making on the basis of
very large and complex data sets” [KKE10]. As Keim described, visual analytics is a
multidisciplinary field, which combines multiple focus areas.

2.2.1 Focus Areas of the Visual Analytics Process

The visual representations and the interaction with them, exploit the advantages
of the human perception and cognition to see, process and understand displayed
information, as described in Section 2.1. The human perception, the monitor resolution,
or the used visual metaphors meet their limits when analyzing large data sets. For
example when comparing 100 data dimensions in a scatterplot matrix, 4950 scatterplots
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Figure 2.2: The scatterplot matrix is a multi dimension visualization technique to lay
out pairs of data dimensions. The visualized data is from an example data set used in
this thesis (see Section 1.1). The images are created with Visplore.

need to be observed, which is probably hard to display on a screen and hard for a human
to analyze.

The automated analysis techniques enable the user to transform the data into a
usable and reduced form. The computational powers of current hardware make these
techniques applicable on huge data sets, but it is hard for humans to understand the
process and the found solutions. For example, it is possible that data mining techniques
only find a local optimum in a set of candidate solutions.

Fig. 2.4 emphasizes that the user is not a passive element in the decision-making
and -exploration process of visual analytics, but rather the connection of the multiple
fields to get deeper insights into huge data sets. Interactive visual analytics is an
effective way to understand and process the data, by combining the strengths of these
fields [TC06, Tho05, KKE10]. After the visual analytics process it may be necessary to
support the user with techniques to produce, present and disseminate the gained
analytical results.

The design study done in this work shows this interdisciplinarity, where the challenges
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Figure 2.3: The parallel coordinates is a multi dimension visualization technique. The
visualized data is from an example data set used in this thesis (see Section 1.1). The
parallel lines between the data dimensions wind speed and gust speed indicate a high
positive correlation. The images are created with Visplore.

of high-dimensional data, the tasks and goals of the users, and the design of the system
are addressed. To analyze and understand these tasks and goals, the tasks and goals of
visual analytics are introduces. These are based on the tasks and goals of information
visualization Sections 2.1.1 and 2.1.2.

2.2.2 Tasks and Goals of Visual Analytics

Analyze first, show important, zoom, filter and analyze further, details on
demand [Kei05]

The visual information seeking mantra suggests visualizing an overview first, but the
unfiltered and unprocessed data in high dimensional data sets make it hard or impossible
to create an overview at the start. Keim adapted this mantra and formulates the visual
analytics mantra. The main difference is the interaction with automatic analysis methods
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Figure 2.4: The feedback loop of visual data-exploration in visual analytics shows that
the integration of automatic data analysis methods to the visual data exploration process
supports the interactive decision making [KAF+08].

while visualizing the data. Uninteresting or falsified results can be detected early in order
to obtain a better and more trustworthy end result.

To understand the problems of the domain and to better address them, the tasks and
goals of visual analytics have been defined. This procedure is similar to the one already
used in the previous chapter for information visualization (Section 2.1).

Tasks

Thomas [TC06] has realized that the decisions of the users in the visual analytics reasoning
process are often made under extreme time pressure . He identified tasks where the user
needs to make decisions and needs support [Tho05]:

• Understanding situations: Quickly understand past and present situations, as well
as the trends and events that have led to the current conditions.

• Future scenarios: Identification of possible alternative futures and their warning
signs.

• Monitoring: Monitoring of current events for the occurrence of warning signs and
unexpected events.

• Indicators: Identifying indicators of the intent of an action or an individual.

In a specific scenario or a domain-specific application, these tasks can be formulated
more precisely. For this work the tasks were identified for a domain-specific problem
from the energy domain (see Chapter 3).
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Goals

Based on the identified tasks, Keim formulated the goals of visual analytics. One of the
most often cited goals of visual analytics is the creation of tools and techniques to enable
people to “Detect the expected and discover the unexpected” [KKE10]. To be able to
detect something, the user has to ask a question. An example for a simple question
from the energy domain would be: What is the current demand for energy in Vienna?
Different features in the underlying data may be detected or discovered:

• Common themes or patterns

• Trends

• Anomalies

• Unexpected relationships

Commonly, the asked questions are not as simple, as previously identified by the user
tasks. The question may not only be fact based, but also needs the judgment of the
user. One example of such question from the energy domain may be: What is the gas
consumption five years from now? How much should I invest in renewable energy sources?
These questions are often called “Wicked”-Problems [RW73] as they do not have an
optimal solution. Their answers range from good to bad, instead being only true or false.
Additionally, problems are unique, which makes it hard to learn from previous answers.
This makes it necessary to include all existing data sources in the decision-making process,
which makes the data massive, dynamic, ambiguous, and often conflicting [KKE10].

After the initial hypotheses are tested using the available data, it may be necessary
to develop alternative hypotheses or explanations. These hypotheses should lead to a
timely, defensible, and understandable assessment, which then needs to be communicated
for action.

In this work the goals are identified based on determined tasks to guide the design
process of the application. They are motivated by the goals of visual analytics.

2.3 Information Reduction

The scalability of a visualization technique can be measured by certain terms. Eick and
Krall [EK02] formulated six factors of visual scalability: Human perception, monitor
resolution, visual metaphors, interactivity, data structures, algorithms and computational
infrastructure. Human perception is a factor that is hard to change, but it is possible to
learn from its powers and weaknesses, to use them wisely in the visualization. Technical
factors, as the monitor resolution and the computational infrastructure, are also hard
to change in an information visualization design process. Alternative methods like a
single device, a personal computer, a smartphone, or a tablet, can be used. Concepts for
overcoming limited monitor resolutions exist, which can be considered when designing
an application. Examples are the CAVE, a surround-screen projection-based virtual
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Figure 2.5: Screenshot of the Rank By Feature Framework by Seo and Shneiderman [SS05].

reality room [CNSD93], or head mounted virtual reality devices [Sut68]. To overcome
the limited computational infrastructure, the utilization of multiple devices as multi node
rendering for computationally highly expensive visualization techniques [GEM+13] or
cluster, grid, and cloud, computation may be considered [AFG+09].

The limiting factors concerning the scalability of algorithms and data structures are
mostly the number of data dimension and the number of data records. These two factors
also limit the possible visual metaphors. To ensure the scalability of a visualization
technique with high dimensional data, it is necessary to reduce information [Pir11].

2.3.1 Dimension Reduction

Principle Component Analysis (PCA), Multidimensional Scaling (MDS), and Self Organiz-
ing Maps (SOM) are common techniques used to reduce dimensions in data visualizations.
They transform the initial data space into a smaller subspace, whereby unimportant
information is omitted.

PCA: The initial data dimensions are linearly transformed to new variables, called
principal components. All principal components are uncorrelated amongst them-
selves and the variance of the transformed data records is maximized [Jol02]. The
number of formed principal components corresponds to the number of the initial
data dimensions. By ranking them by their variance and selecting only the first
components, the number of data dimensions can be reduced, whereby the original
information of the data is best preserved.

MDS: The goal of MDS is the spatial arrangement of the input data dimensions in
a low-dimensional space in a way that the distances after the projection are
maintained as closely as possible to the inconsistencies or similarities in the initial
data dimensions [Mea92]. To be able to interpret the resulting low-dimensional
space, the chosen space is mostly two or three dimensional.

SOM: This is a vector quantization technique often used to visualize a two-dimensional
representation of high dimensional data. The mapping from the initial space to
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the reduced two dimensional space is done by arranging prototype vectors (with
the same number of dimensions as the input space) on a two-dimensional grid,
whereby a weight is assigned to each prototype vector. With a competitive learning
algorithm the prototype vectors are placed with minimal distance to the initial
data dimensions [Koh90, Pen05].

The drawback of these methods is that they produce a subspace that has no intuitive
meaning to the data analyst [Fle01]. A data analyst knows in which space a single
measurement should be. For example the Production Values of a photovoltaic plant are
positive for a specific time period. The analyst has a concrete mental model how the
time series of the PV should run. If this space has been transformed, the mental model
of the data analyst will no longer fit to the data and the expert knowledge of the analyst
will no longer be applicable.

Nonetheless, the number of dimensions needs to be reduced. A reduction method
that does not transform the original data dimensions is a sampling of the dimensions by
certain criteria to create a meaningful subspace.

A technique that supports the generation of meaningful subspaces is called Visual
Hierarchical Dimension Reduction (VHDR) [YPWR03]. It uses a similarity measure to
hierarchically cluster the dimensions and allows the user of this framework to interactively
explore and modify the created hierarchy. From this hierarchy clusters, a meaningful
subset is selected. Representative dimensions of these selected clusters are then visualized
as visual representations. The drawback of this method is that not all dimensions are used
for the encoding of the visual representations. User interaction is required to preselect
important displayed dimensions. This may become a difficult task, especially for high
dimensional data and without any a-priori knowledge or dedicated support.

To guide the user to select a meaningful subset, the user may rank the dimensions
by a certain feature. The Rank By Feature Framework by Seo and Shneiderman [SS05]
ranks small preview visualizations of one dimension or two dimensions by statistical
properties, which give a good initial overview of all dimensions. The dimensions that
match best for the chosen criteria are displayed first. This approach scales well with
the number of data records, but has limitations regarding the number of dimensions.
Especially for the comparison of dimension pairs (e.g., through a scatterplot matrix), the
number of simultaneously displayed pairs has a quadratic growth. But also in the case of
one-dimensional statistics, the upper limit of displayed visual representations that can be
handled reasonably is a few hundred [PBH08]. Fig. 2.5 shows a screenshot of the RBFF
for a two-dimensional comparison.

2.3.2 Record Reduction

An orthogonal approach to maintain the scalability of an application is the reduction of
data records. Commonly used techniques are the removal and the aggregation of entries.

To reduce the number of displayed visual entries it is one option to just leave some
out. There are two different options to choose the data records to leave out. One option
is to randomly choose the preserved records, which is called sampling. Sampling reduces
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Figure 2.6: Screenshot of the visual analytics software Tableau. The Profit is aggregated
by four categories: market size, product type, month and market region [MHS07].

a b c

Figure 2.7: Hierarchical visual aggregation shown for a scatterplot (a). Hierarchical
clusters may be visualized with their bounding boxes (b) or their convex hulls (c) [FP02].

clutter and improves the visual scalability and the scalability of data structures and
algorithms at the same time, while preserving trends and correlations [DE02, ED07]. In
contrast, it is not guaranteed that the remaining data records maintain all information
the user needs (e.g., outliers). The other option is to reduce data records according
to specific conditions, which is called filtering. Dynamic filtering is a frequent step in
the visual information seeking mantra and found its way into different visualization
designs [TSDS96, WK06, STH02, LSS09]

The aggregation approach combines data records to form a reduced number of visual
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entries. In contrast to data removal, all data records are contributing to the final result.
Three main approaches of aggregation are used in information visualizations:

• Pivotization combines the quantitative data of one column of a data table by the
categories of other columns.

• In binning, the target quantities of the data dimensions are divided in ascending
order into intervals — so-called bins. A commonly used technique to visualize the
created frequency distribution is the histogram for a single data dimension.

• All other possibilities to combine data, fall into the class of data abstraction.
Examples include cluster analysis [TB66], graphical statistical summaries such
as box plots [Yu77], and visualizations of models such as regression lines and
curves [DS14].

For the creation of a pivot table the categories of a categorical data dimension are
used to reorganize and summarize the quantitative data dimensions of the data table. The
output data may be represented in a condensed, summarized form due to the aggregation
used in the data fields. This concept has been formalized and found its way into many
business applications. They create a hierarchy by splitting the created aggregates from
an categorical data dimension by another dimension. This drill down from one overview
visualization was used in On-Line Analytical Processing (OLAP) [CCS93]. Stole and
Hanrahan developed the system Tableau [MHS07] (former Polaris [STH02]). This
thesis applies an algebra [Han06] for the partitioning of data dimensions into subsets to
create the pivot table. Additionally, specifying the arrangement of the partitioning and
creating visual representations of the aggregations via drag and drop, led to commercial
success. Fig. 2.6 shows the interface of Tableau. The quantitative data dimension Profit
is aggregated into a pivot table by building the sum of the categorical combinations of the
data dimensions Market Size, Type, Month, and Market. The first three data dimensions
partition the data on the y-axis and the Market is shown as a colored lined. This concept
of defining the pivot table and partitioning and aggregating the quantitative data is used
in this thesis to maintain scalability (see Chapter 4).

Elmqvist and Fekete presented a model for implementing hierarchically aggregated
visualizations [EF10]. They propose that for many overlapping visual elements, as seen
in a scatterplot visualization in Fig. 2.7a, it may be more scalable to aggregate them.
Axis-aligned bounding-boxes (Fig. 2.7b) can be used to combine nearby points into
clusters. These boxes give a good abstraction of the minimum and maximum values of a
cluster. Fig. 2.7c shows the use of a more accurate visual representation, i.e., the convex
hull, for displaying the extents of a set of points. In addition to the extents, the central
tendency of a cluster may be encoded with opacity. This is also shown in Fig. 2.7c where
the center point is displayed fully opaque and the border of the convex hull is shown
transparently. This concept of abstract by including statistics of data into a visualization
is similar to box plots.
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a b c

Figure 2.8: Design strategies for comparing visualizations can be subdivided into three
categories: Juxtaposition (a), Superposition (b) and Explicit Encoding (c) [GAW+11].
The two compared Temperature 01 and Temperature 02 time series are from the used
example data set (see Section 1.1) and are visualized with Visplore.

Elmqvist and Fekete not only implemented this technique for visualization tech-
niques, but proposed general guidelines for creating hierarchically aggregated visualiza-
tions [EF10]. There should be an upper limit of rendered visual entities of a visualization.
The visual appearance of aggregates should be simple and they should summarize the
information of the underlying data. Aggregates are prone to interpretation errors, hence
they should be distinguishable from data records and convey a meaning to the viewer.
The design of the visual aggregates of this theses follows these guidelines. For example,
the visual encoding of the different statistical properties use simple representations that
helps the user to interpret the statistical type (dispersion, the central tendency and in
addition to the work of Elmqvist and Fekete the frequency distribution).

There are multiple surveys that focus on high-dimensional data visualization [LMW+16,
Mun14, AMST11]. These surveys extend the list of already mentioned techniques and
design guidelines to handle high-dimensional data.

2.4 Comparative Visualization

The strength of the human in the visual analytics process is his ability to effectively com-
pare objects through the visual system. This includes finding differences and similarities
in visualizations.

Techniques for visual comparison for information visualization can be subdivided
into three categories Juxtaposition, Superposition and, Explicit Encoding [GAW+11].
Fig. 2.8 illustrates these three visual designs on a simple time-series visualization of a
used example dataset.

Juxtaposition: The visual objects in this design strategy are placed next to each other.
This enables the visual objects to be placed within their own space. (See Fig. 2.8a) The
number of displayed objects next to each other is limited, because the design relies on the
viewers memory and eye-span [Tuf06]. Fig. 2.9a shows only 10 time series next to each
other, where it is already hard for a human to spot differences between the visualizations.
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a b

Figure 2.9: The limits of comparing high-dimensional data sets are the human memory
for Juxtaposition (a) and the visual system for Superposition (b) [Fra13]. The compared
time series are from the used example data set (see Section 1.1) and are visualized with
Visplore.

Superposition: In this design strategy the visual objects are placed (overlaid) in the
same coordinate space. Fig. 2.8b shows the same time series as in Fig. 2.8a overlaid in
the same space. The visual system is used to compare the objects in this design. The
number of displayed objects is limited by the mechanisms of perception [Fra13] and the
screen space. Fig. 2.9b shows 163 time series in one coordinate space. Visual clutter
makes it difficult to compare the time series.

Explicit Encoding: The last category is the visualization of computed relationships
between the objects. Fig. 2.8c depicts the difference of the two previously shown time
series Temperature 1 — Temperature 2. A drawback of this method is that the contexts
of the original objects are not visualized and only the relationship is displayed.

In practice many visualization algorithms use a combination of these design strategies
to enable a comparison [GAW+11]. This thesis focuses on a combination of the categories
Juxtaposition and Superposition to support the user in comparing data.
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CHAPTER 3
Tasks and Goals

This chapter introduces the used methodology (Section 3.1) to characterize tasks that are
needed to overview high-dimensional data from the energy sector (Section 3.2). These
tasks are used to derive the goals of the Hierarchical Data Overview (HDO) framework
(Section 3.3).

3.1 Methodology

The nine-stage design study methodology framework [SMM12] is used to create a validated
design of the HDO framework, as described in Section 1.4. In the first step of the core,
phase the tasks of the user group were identified, as previously introduced for the tasks
and goals for information visualization (Sections 2.1.1 and 2.1.2) and for visual analytics
(Section 2.2.2). In the next step, based on these tasks, the goals of the framework were
established.

To be able to characterize these tasks and on their basis the goals for an overview
visualization of high-dimensional data, discussions with domain experts from the energy
sector and visualization researchers from the VRVis were conducted.

3.2 Task Analysis

Transmission-system operators in the energy sector acquire time-series data from different
sensors on a regular basis. These are used for power control and risk management.
The inspection and analysis of newly acquired data is hence a frequent, recurring, and
important activity.

The time spent looking at the data can be shortened by identifying the recurring
tasks a user needs to fulfill. This thesis aims to focus on the several tasks described in the
following. To reference them later in the work they are labeled with T1–4: T1 - finding
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structures, T2 - rank by feature, T3 - assessing the purity of groups, T4 - exploration
and tuning.

3.2.1 T1 - Finding Structures

A key task of a data analyst is to get insight into the data and to validate or discard
an initial hypothesis. Hypotheses often refer to structures in the data. In contrast
to the validation of expected structures, the discovery of new structures is also a user
task. Important structures in time-dependent data are listed below and illustrated by an
example:

• Trends: Finding trends is a high-level task, which is not only relevant in the energy
sector. Patterns that can be relevant for the analyst of a data set include the
increase or decrease of the statistical properties of the data over time or recurring
peaks, troughs, or plateaus of data records [Bre16].

In the energy sector a trend is mostly associated with the behavior of time series.
A transmission-system operator may be interested in the change of the power
consumption over time of a certain area to estimate the needed power generation.

• Groups: Identifying structures like groups or clusters of data records enables the
analyst to combine the underlying information, reduce the displayed visual elements
and maintain the communicated information [Mun14]. Clusters are a set of data
records that are more similar to each other than to the ones from other clusters.
Finding groups, or clusters is relevant in the energy sector, when considering the
similarity between time series. For example grouping the end-consumers by their
energy consumption over time, helps the operator to summarize information and
getting an overview.

• Modalities: One feature that can be identified, by looking at all data records of a
data dimension, is the modality of the distribution of the data. The mode, also
called modal value, is a location parameter in descriptive statistics. It is defined as
the most common value in the data. If the distribution has more than one mode
it is called multimodal. Energy operators may be of special interest to energy
production or consumption time series with multimodal distributions. An example
would be the identification of energy consumption peak loads in the morning and
the evening of a work day, where the power consumption is significantly higher,
than on the average supply level.

• Outliers: In every dataset outliers like anomalies, novelties, deviants, and surprises
exist, which do not match the general trend [Mun14]. Finding them helps the
analyst to direct the exploration of the data to find the cause of the outlier. Power
grids need to be designed according to the highest peaks of power consumption.
These peaks may be outliers to the general trend. Understanding the origin of
peaks and preventing them can help the operators safe money.
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3.2.2 T2 - Rank by Feature

The modality is not the only feature that can be computed from a data dimension. Other
statistical properties like the median, the sum, or the number of outliers can be from
interest to the user. As described by the RBFF, ranking all data dimensions by one
feature, helps the user explore the most relevant data dimensions. An example from the
energy sector would be the exploration of the biggest electrical loads in the electric grid.
Moreover, transmission-system operators developed more advanced statistics to assess
features of the measured sensors. Ranking gives them an overview of the features of the
data and finding the interesting time series.

3.2.3 T3 - Assessing the Purity of Groups

By merging the data dimensions with the help of meta-information into groups, it is
necessary to identify whether the grouping is sufficient for the user. If the similarity of
the data dimensions inside a cluster or group is high, it can be assumed that the purity of
this group is high. By characterizing this purity of these meta-information based groups,
the user is able to make further decisions. One use case for assessing the purity of groups
is the validation of the mental model of the meta-information based grouping to the
actual data. For example photovoltaic panels may be grouped into plants. By assessing
the purity of these groups, panels may be identified that do not match the others and
need to be analyzed in more detail.

3.2.4 T4 - Exploration and Tuning

After the user was able to get an initial overview, further questions concerning the data
may arise. These can be answered by exploring and tuning the created groups and
receiving more detailed information. Two important exploration and tuning tasks are
identified and are listed below and clarified by an example:

• Drill-Down: An analyst may be interested to locate and compare the identified
structures found in task T1 in smaller groups of the data. In the energy sector this
is especially relevant for a temporal refinement in time-dependent data (e.g., year,
month, day) and local refinement in spatial data (e.g., country, city, power plant).

• Roll-Up: If a structure of interest is found (task T1) inside a group, it may be
interesting, which impact this structure has on the parent group and how the
structure relates to other groups. The roll-up is the counter-operation to a drill-
down. Groups are summarized to a higher hierarchy level. For example, a local
structure in the energy sector would be the power production of one power plant at
a specific time interval. Summarizing these local structures from monthly to yearly
intervals or from single plants to regional groups may help the system operators to
get an overview.
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3.2.5 Task sequences

The presented tasks are not performed in isolation. As the visual information seeking
mantra (see Section 2.1.1) indicates, it is necessary to repeat the information visualization
tasks until the goal of the user is reached.

In case of the energy sector, the data analyst starts with an overview (T1), filters
for the relevant information (task T2), and explores and tunes further (task T3 and
T4). Whereby not every task sequence occurs equally often [Bre16]. It depends on the
previous knowledge of the user, which tasks require most of the time. If the question of
the user is well formulated the time spent with task T1 will be relatively short in contrast
to operators who analyze their data not very often and need to get an overview first.

3.3 Design Goals

Based on the task analysis three design goals have been established. These goals guided
the design process of the HDO framework. Similar to the tasks they are labeled with G1–3:
G1 - visual summaries of groups, G2 - flexible drill-down and roll-up, G3 - scalability

3.3.1 G1 - Visual Summaries of Groups

To support the user to find structures in the data (task T1), efficient visual summaries
of groups of (large numbers of) dimensions need to be displayed. The requirement on
the summaries is that they give a good reproduction of statistical position, variance and
distribution, and also the trend of data dimensions over time or over categories (task T3).

3.3.2 G2 - Flexible Drill-Down and Roll-Up

With respect to task T4 the overview visualizations need to be explored in depth. The
large-scale visual overview summaries of the data can be seen as a starting point for a
drill-down exploration into interesting parts of the data. The concept of drill-down and
roll-up with respect to “any known structure of the feature space” [TLLH12] enables this
fast change of the viewing granularity. A goal of the framework is to make it possible for
the user to define structures in a way that makes it easier for the user to flexibly change
the granularity of the data to be analyzed, according to which it can be subdivided or
summarized.

3.3.3 G3 - Scalability

Like previously mentioned, the number of data dimensions and records is rising. The
framework should not be limited by any inherent upper limit of dimensions or data
records. This also concerns the visual complexity of the used visualization. The goal of the
framework is to support simple monitoring and reporting tasks (T1, T2), but also to allow
users to perform detailed exploration tasks (T3, T4). This implies a trade-off between
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the simplicity and cognitive ease of the visualizations and preserving the distributions,
modalities, and outliers of the underlying data.

27





CHAPTER 4
Data Model

This chapter describes the underlying data model of the Hierarchical Data Overview
framework. The data must have a special structure so that the formulated goals can be
achieved in the energy sector. A single table with the raw data is required Section 4.1.
This consists of columns and rows, which can contain meta-information (Section 4.2).

In this thesis, a column is referred to as a data dimension and a row is referred to
as a data record. Fig. 4.1a shows a data table, which is used as a guiding example for
the data model. The guiding data example from Section 1.1 is used throughout the data
model to create a context to the main application area.

Sensor Type PV PV Dew Point Dew Point
Location A B A B
Unit kW kW C° C°

PV1 PV2 Dew Point 1 Dew Point 2

8 7 -2 -1
9 7 -1 -1
64 63 1 2
10 12 -1 -1
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Time Year
1.1.10 10:00 2010
9.5.10 10:00 2010
1.1.11 10:00 2011
9.5.11 10:00 2011
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Data Table

a

b

c

Figure 4.1: Data tables in the energy sector (a), contain meta-information on the columns
(b) and on the rows (c)
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4.1 Raw Data Table
The data table in Fig. 4.1a is a simplified example of how the raw data can be present in
the data model. It contains values from the guiding data example. A column forms a
time series and thus a data dimension. In this example the data dimensions are PV and
temperature measurements from Dew Point sensors.

A row contains the measurements from a specific point in time. This can also be an
aggregation over a time interval. A row forms a single data record. If the original data
are not available in the form of this table, they must be transformed into this form by a
data transformation.

4.2 Meta-Information of Raw Data
In addition to the raw data, there is often meta-information about the data available.
Since the use of meta-information is a key element of this thesis, a classification of it is
presented first. Then we will show how meta-information can be represented in the data
model and how the meta-information depend on each other.

4.2.1 Classification of Meta-Information

Meta-information is the data about data. Meta-information can be organized into four
main categories [FR14]. Descriptive meta-information is used for discovering and under-
standing the underlying resources (e.g., the sensors). Administrative meta-information is
used for the processing of files. It can further be subdivided into technical, preservation,
and rights meta-information (e.g., the acquisition time of the sensor data). Structural
meta-information creates relationships between parts of the resources (e.g., the position
of the sensor). Markup languages mix the previous types of meta-information within the
content (e.g., SensorML by the Open Geospatial Consortium [BR07]).

Table 4.1 shows the four categories of meta-information with examples of the properties
of the type and the primary task. This thesis focuses on descriptive and structural meta-
information. Administrative meta-information and markup languages may be used to
process the data to transform it into the needed data model of the HDO framework.

One important property of meta-information is that it is collected or extracted to
fulfill a specific purpose and sorted into defined categories [Ril04]. Domain experts are
familiar with these categories and know how to use them.

4.2.2 Meta-Information on Data Records

The data set can contain categorical or numerical meta-information on every data record.
This meta-information may be present as a categorical data dimension in the data table.

One common categorical meta-information are time intervals of the data record (e.g.,
year, month, day, . . . ). They are created by partitioning the time value into time intervals.
In Fig. 4.1c a categorical meta-information on data records is shown as the Year-column.
But also other categories may be relevant meta-information in the energy sector. For

30



4.2. Meta-Information of Raw Data

Table 4.1: Meta-information can be categorized by type [Ril04].

Type Example Properties Primary Uses

Descriptive
meta-
information

• Location
• Name
• Sensors
• Keywords

• Discovery
• Display
• Interoperability

Administrative
meta-
information

• Technical meta-information:
file type, file size, creation time

• Preservation meta-information:
checksum, preservation event

• Rights meta-information:
copyright status, license terms, rights
holder

• Interoperability
• Digital object

management
• Preservation

Structural
meta-
information

• Sequence
• Place in hierarchy

• Navigation

Markup
languages

• Paragraph
• Heading
• List

• Navigation
• Interoperability

example a flag that indicates the status of the sensor or the current billing information,
may be represented in the data and important information for analyzing the data further.

The data model of the HDO framework requires a time identification for every row
of the data column. This may be a single time value or a time interval. The value is
represented as a data record meta-information, which is shown in Fig. 4.1c as the Time
column next to the Year column.

4.2.3 Meta-Information on Data Dimensions

Additionally to data records, meta-information can be assigned to the data dimensions
themselves. This information cannot be stored inside the data table itself, but has to
be stored in an external resource, because it may have a different data type than the
data dimension. This meta-information is valid for all data record of the corresponding
data dimension. This could be the information of the location, the measuring unit, or
the type of the sensor creating the data records of the dimension.

Fig. 4.1b shows the meta-information for every column of the data table as an
additional table. One rows in this table contains one meta-information of the same type
for all data dimensions. This relationship is later used by the HDO framework to group
the data dimensions.

4.2.4 Combination of Meta-Information

The numerical data dimensions can originate from a similar type (e.g., multiple power
consumption sensors in kiloWatt (kW )). It is possible to plot the data on a common
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scale. This enables the comparison of similar distributions or sequences, or the detection
of outliers (task T1). In contrast to the common scale, the dimensions can also have
different units (e.g., weather time series with temperature, wind speed, wind direction,
. . . ). Typically it doesn’t make sense for this data to share a common scale. In Fig. 4.1
the kW values of the PV sensors are on a different scale than the C◦ values of the Dew
Point time series. Section 5.5.3 describes the combination aspect in more detail.

4.2.5 Dependencies of Meta-Information

Meta-information can be hierarchically structured. An example of a large hierarchy
of descriptive meta-information is the Resource Description Framework (RDS) vocabu-
lary [Sch]. It is used to mark up semantics within web pages and it is widespread on the
web. An example for a schema hierarchy from the entity LocalBusiness is:

Thing > Organizat ion > Loca lBus ines s
Thing > Place > Loca lBus ines s

In the energy sector, the meta-information of the data dimensions can have hierarchical
dependencies. One common example is the location of a sensor. If it is assigned as
meta-information, it may contain different levels of detail, which form the hierarchy. The
highest level could be the state (e.g., Austria). A more detailed second level could be the
city (e.g., Vienna). The lowest level could then be the actual address of the sensor.

Categorical meta-information on data records can also describe a level of detail.
For example the measurement of PVs could contain status-codes as a categorical meta-
information. A status code is assigned for every observed value. To be able to overview
the status of the PVs, different levels of detail can be derived. These cover everything
from from very basic information (Ok and Not-Ok) to detailed information (the concrete
error code of the sensor).
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CHAPTER 5
Visualization Design

This chapter describes the visualization method for the HDO framework. Its design is
engineered by the defined goals from Section 3.3 for an application to data described in
Chapter 4.

To fulfill the goals, the framework performs multiple steps. First, the data table
is split into smaller parts. These parts are placed in a hierarchical relationship. Then
statistical properties of every part are computed and in the end visualized in a tabular
layout.

5.1 Subdividing Raw Data Tables into Data Chunks
The first of the framework is to split the data table into smaller parts. By utilizing the
meta-information, described in the previous chapter, the data table can be subdivided
by data dimensions and by data records into smaller blocks of data. In this thesis, these
blocks are referred to as data chunks. Fig. 4.1, described in the previous chapter, is
extended, to describe the subdivision into these data chunks. Fig. 5.1 illustrates the
splitting from the not yet subdivided raw data table (see Fig. 5.1a) to smaller data
chunks (see Fig. 5.1f). The data table is separated both at the rows and at the columns.
These are orthogonal concepts and utilize different meta-information. For the subdivision
of columns the meta-information on data dimensions is used (see Section 4.2.3). The
meta-information on data records is used for splitting rows (see Section 4.2.2).

Fig. 5.1d shows the subdivision of the data table by the meta-information Sensor to
the data chunks PV and Dew Point. Not shown but also possible subdivisions would be
the combination of the data dimensions by the Location or the Unit meta-information,
resulting in different data chunks.

A further possibility for the decomposition of the data table is a separation at data
record level. Here all rows are combined to a data chunk which shares the desired
meta-information. Fig. 5.1e shows the subdivision of the table according to the Year in
which the time stamp (i.e. the row) was created.
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Figure 5.1: The subdivision of the data table (a) by utilizing the meta-information of
data dimensions (b) and data records (c) to data chunks (d — f)

The data chunks shown in Fig. 5.1f are created by applying both previously described
subdivisions. The order in which the two subdivisions are made is interchangeable,
because the resulting data chunks are identical. Of course, it is possible to make further
subdivisions, for example to add the Location as meta-information. From this, all data
columns would be separated into two data chunks resulting in 8 blocks with 2 values.

5.2 Hierarchical Relationship of Data Chunks

The subdivision of the data table is performed for one meta-information at a time. One
subdivision step, for example, from the table seen in Fig. 5.1a to the data chunks of

34



5.3. Hierarchical Tabular Layout
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Figure 5.2: The drill-down of the hierarchy to the chunks with three hierarchy levels as a
graph representation. The blue nodes indicate the hierarchy levels and the red nodes the
data chunks. Figs. 5.3a to 5.3d show the same drill-down with the resulting visualization
of the HDO framework.

sensors seen in Fig. 5.1d, is called a partitioning. The consecutive execution of the
partitioning leads to the data chunks. As described above, the order of operations is not
relevant. However, it becomes important for the user if an interactive drill-down or roll-up
of the data chunks is to be used. Fig. 5.2 shows a graph, which shows the subdivision of
the raw data table (All) to the data chunks (Dew Point 2 2011 and Dew Point 2 2012 ).
The blue nodes in the graph represent three hierarchy levels of partitioning.

One hierarchy level refers to a meta-information and thereby defines the partitioning
of an incoming data chunk into multiple data chunks. In this example, the data table is
first partitioned into data chunks by their data dimension meta-information Sensor, as
in the previous examples. This may result in multiple disjunct chunks and all of them
are then further separated by their data dimensions. The last hierarchy level partitions
the data chunks by the data record meta-information Years. The leafs of the hierarchy
are actually just a concatenation of these three operations.

The hierarchical structure is a key concept to ensure the scalability (goal G3) of the
HDO framework [EF10]. The HDO framework aims to visualize each of these nodes to
the user. Besides the visualization of nodes and leaves, the partitioners must also be
represented. In order to present this partitioning to a user in an understandable way and
to give him the possibility to edit it, a tabular layout was used.

5.3 Hierarchical Tabular Layout

The overview visualization is designed using a hierarchical tabular layout (see Fig. 5.3).
This design decision of using a table-oriented display enables an independent visual
encoding of different aspects of the data [LGS+14]. Additional previous work showed
that the users are familiar with this kind of layout [ASMP17].

The tabular layout consists of two orthogonal parts: rows (Section 5.4) and columns
(Section 5.5). A Row defines a combination of data chunks and a Column is responsible
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a b

c d

Figure 5.3: The HDO framework is visualized by a tabular layout. The left-hand side
defines the rows of the visualization, which are defined by the hierarchy of the data
model. The right-hand side visualizes the data chunks of the rows inside columns. The
hierarchy can be collapsed (a), expanded by the data dimensions (b), combined by the
sensor (c), or refined by a categorical attribute (d). The refinement increases the number
of visualized data chunks.
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for creating a visual summary of a descriptive quantitative feature of the data chunks
(goal G1).

5.4 Table Rows

Visually the first part of the tabular layout of the framework corresponds to the hierarchy
of the data chunks. The tabular layout offers the user an interactive definition of the
hierarchy (goal G2) by defining one column per hierarchy level.

Fig. 5.2 shows the drill-down in a graph representation. The HDO framework
visualizes the partitioning of the data table into a hierarchy of data chunks in a tabular
representation. Fig. 5.3 shows this drill-down in four steps. Each step shows the tabular
layout after the addition of another hierarchy level.

The headers of the left-hand part of the shown tables show these different hierarchy
levels. The first column, marked with All in the example, is the root node of the hierarchy
(see Fig. 5.3a). This column represents the whole raw data table and does not subdivide
it. In this example the root node is the only data chunk and it is equal to the only
leaf node of the hierarchy. The second column uses the data dimensions of the original
table as a subdivision (see Fig. 5.3b). The next column partitions the table by the data
dimension meta-information Sensor (see Fig. 5.3c). Fig. 5.3d shows the partitioning by
the data record meta-information Years as the added fourth column.

One row of the table corresponds to a node of the created hierarchy. In Fig. 5.3b one
row corresponds to a single data dimension and also to a single data chunk (for example
Dew Point 03 ). In contrast, in Fig. 5.3c the first row shows all data dimensions with the
same meta-information of the Sensor Air Pressure. That means it is not a leaf of the
hierarchy but a node, which contains several (four) leafs. It is possible to drill down the
hierarchy to show nodes and leafs side by side. Underneath the previously described row
in the same Figure four rows are shown which do not show a node but again leafs.

Additional hierarchy levels refine the data table into data chunks (goal G2). A
usual refinement is the partitioning of the data table by data dimensions. Fig. 5.3b
shows the table with all assigned data dimensions, which displays a similar layout as
compared to the RBFF. The 159 data dimensions and thereby also rows are assigned to
the visualization. These are too many to display all of them on the limited screen area.

By combining data chunks, the number of rows can be reduced. In Fig. 5.3c the
data dimensions are combined according to their sensor. The number of displayed
rows decreases but the number of displayed data chunks increases. For example, the
sensor Air Pressure contains four dimensions which are plotted in the mean column (see
Section 5.5.1). In Fig. 5.3d the hierarchy level Year is assigned to the table. As previously
described, this level partitions the data records of the data chunks by the categorical
meta-information (see Fig. 4.1). As shown in the visualization of the dimension Dew
Point 01, the number of chunks has increased.

The user is able to control the order of the hierarchy levels, add new levels or remove
them (see Section 6.2). Additionally, the visible set of rows can be defined by collapsing
and expanding the hierarchy nodes individually. Fig. 5.3d shows the expanded node Dew
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Point of the hierarchy level Sensors with an additional refinement for the dimension Dew
Point 02.

The interactive refinement supports the identified goal G3 by enabling a visual
scalability for a high number of dimensions and still allows the user to explore and tune
(task T4) the data.

5.5 Table Columns
The orthogonal part to the rows of the tabular layout are the columns to the right hand
side. They define which aspects of the data chunks the user wants to observe. This
includes statistical properties and visual encoding. To maintain the scalability of the
visual complexity (goal G3) of the visual representations of the data chunks the design
decision for the visual encoding of a single entry is to select simple and commonly used
visualizations. For example in Fig. 5.3 the mean of a data chunk is visualized as a line
inside the cell of the column.

This section addresses three aspects of the visualization of data chunks: the visual
aggregation, the partitioning, and the combination aspect.

5.5.1 Visual Aggregation of Data Chunks

a b c

d e f

Figure 5.4: The data chunks are visually aggregated in the columns. A cell can visualize
one leaf of the hierarchy (a, b, c), but is also able to visualize a node by combining the
underlying leafs (d, e, f).

One column is responsible for calculating and visualizing a specific descriptive statistic
for every row. These statistics are used to quantitatively describe and summarize different
features of the defined data subsets (goal G1) [Man07]. The system differentiates between
three classes of descriptive statistics. Fig. 5.4 shows the visual encoding of these three
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classes: Central Tendency (see Figs. 5.4a and 5.4d), Dispersion (see Figs. 5.4b and 5.4e)
and Frequency Distribution (see Figs. 5.4c and 5.4f).

A simple way to visualize a statistic feature is by means of a textual representation.
However, text does not encode the position, scattering, and distribution (goal G1) to
the other displayed values. By plotting the features of the data chunks onto an axis a
more descriptive representation can be achieved, because the visual aggregates can be
compared intuitively with each other.

In the following paragraphs the visual representation of a data chunk within a cell
concerning the three classes of descriptive statistics is introduced in detail. It is also
discussed how several visualizations can be combined within a cell. Section 5.5.3 deals
with more details of the combination aspect.

Central Tendency

A univariate statistic can describe a point on an axis. This includes the central tendency.
Examples of this class of statistics are the average, the extreme values (minimum,
maximum) or the percentile values (median, quantiles). Like other univariate statistics,
they can be used for ranking (task T2) but also for other tasks, like finding outliers (task
T1). A textual representation of the aggregation, as shown in Fig. 5.4a on the right-hand
side of the cell, enables the user to observe the precise numerical value. To visualize
the value of the aggregation, a line is positioned between the extents of the axis. This
enables the user to compare the value of one data chunk with another one (task T1). If
multiple data chunks have to be visualized within one cell, the same visual aggregate
can be used. The locations of the underlying features are plotted as gray lines, and the
combined statistic is shown as a black line (see Fig. 5.4d).

If more than one line is drawn at the same location, the visualization turns into a bar
chart as shown in the Mean cell of the Global Radiation row of Fig. 5.3d. The bin with
the most overlaying lines uses the full vertical space of the cell. All other lines start at
the lower border of the cell and their height is, depending on the number of overlaying
lines, proportionally smaller than the full height.

Dispersion

The second class of univariate statistics is the dispersion. It describes a positive range
along an axis. Examples for this class of descriptive statistics are the standard deviation
or the Inter-Quartile Range (IQR). Similar to the previous encoding, an area is positioned
around a dependent central tendency (the median for the IQR or the mean for the
standard deviation) inside the axis of the aggregation. One example visualization is an
area with the width of the IQR around the median, which is shown in Fig. 5.4b.

The dispersion of multiple data chunks can also be visualized within a cell. The
value that is displayed is usually the dispersion of the combination of all underlying
data. In order to show that several chunks are visualized in this cell, the areas of
the individual visual elements are drawn on top of each other. Fig. 5.4e shows this
over-plotting. As one can see, this cell shows different gray scales. These are created by
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histogram equalization [PAA+87]. Histogram equalization is a technique for adjusting
image intensities to enhance contrast. The individual visualizations (the black ares) only
have a single intensity value in its image which is a fully saturated black Imax. Now the
n visualizations are drawn adaptively on top of each other, but the intensity value I of
the individual images are reduced by

I = Imax
n

.

The intensity values of the resulting visualization are now changed using the histogram
equalization method, so that a maximum contrast between the areas is achieved.

Frequency Distribution

An example of a visual representation of the frequency distribution of data is a histogram.
A textual representation is no longer suitable, because multiple values have to be encoded.
To support details on demand (task T4), specific information of a bin value of a histogram
can be displayed as a tool-tip information. In contrast to the previous classes, it is not
easily possible to rank the data chunks by frequency distribution.

The binning of the histogram depends on all data chunks inside the axis (see Fig. 5.4c).
If the frequency distribution of multiple data chunks has to be visualized within one
cell, the histograms of the underlying data chunks are plotted over each other. As in the
previous class, histogram equalization is used to show the combination. The darker a
part of a bin the more histograms overlap in this position (as shown in Fig. 5.4f).

As identified in Chapter 3, users are also interested in finding structures over time
(task T1). In order to observe data chunks over another variable such as time, columns
are expanded so that they can be further partitioned.

5.5.2 Partitioning a Column

Another task a user may want to address is the trend of a descriptive statistic over
time (T1). The system supports the partitioning of a column into sub-columns. Then
the descriptive statistics for the data chunks are calculated for every partition of the
column. This provides a global overview on local relationships of the statistic features
(goal G1) [MP13].

Fig. 5.5 shows a partitioning of the column into time intervals (in this example thirds
of months). For every row and every partition, the values from the previously introduced
three classes that were proposed in Section 5.5.1 are computed and visualized.

Central Tendency

The calculated descriptive statistic of every partition is connected with a line, resulting
in a line chart for every data chunk. The vertical position of a not partitioned column
had no meaning. For a partitioned column the vertical position of the line (the height)
is determined in the same way as the horizontal position for the central tendency of a
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not partitioned column. Multiple lines are drawn inside one cell if multiple data chunks
belong to one row (see Fig. 5.5a). This representation can be used to analyze the trend
of the data, to find outliers, reoccurring patterns, or correlations (task T1).

Dispersion

Similar to the central tendency, lines are drawn as a visual encoding of the dispersion for
a partitioned column. The width of the line inside a sub column encodes the dispersion of
the data around the dependent first moment. Its upper and lower boundaries are defined
by the value of the dispersion. These two boundaries are connected for all partitions
and the area between them is filled (see Fig. 5.5b). This representation can be used to
characterize the purity of the underlying data (task T3).

Frequency Distribution

The frequency distribution of all data chunks inside a sub-column is calculated. A
visualization called Curve Density Estimates [LH11] is used to encode the distributions
of all sub-columns (see Fig. 5.5c). Each sub-column is partitioned a second time and
each bin is colored with the relative frequency of the data it contains. The darker a point
is displayed, the more data points it contains. This representation can be used to analyze
the modalities of the underlying data chunks and address the purity of the groups (tasks
T1 and T3).

5.5.3 Combining Representations of Data Chunks

All shown examples have used the same scale for creating the visual aggregate. A
precondition is, however, that not all data chunks have to share the same scale.

Scales of a Cell

A single linear scale maps a continuous, quantitative input domain to a continuous output
range. The output range is defined depending on the used column. For columns without
sub-columns the width and for partitioned columns, the height is used.

The input domain is set by the statistical properties of a column. All data chunks
that share a scale belong to a set, called a scale group. The assignment to scale groups is
the same for all columns, but each column has a different input domain for its scales. The
domain is defined by the calculated statistical values of the data chunks. For example,
the Median column in Fig. 5.4a uses all four Median values of the four data chunks (6.27,
5.37, 7.07, 4.45) and takes their minimum (4.45) and maximum (7.07) values to define
the continuous, quantitative input domain. Other columns may use different strategies
to define the domain.
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a
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d

Figure 5.6: The scales of the visualized data chunks can be configured by the hierarchy
levels. To compare the position the data chunks, nodes of the level are visualized on a
common scale ( ) (a, b). To compare the shape of data chunks, every node receives an
own scale ( ) (c, d).

Scale Affiliation of a Data Chunk

The created hierarchy levels, as described in Section 5.4, can have the property that they
separate data into distinctive nodes, where the combination of the data chunks has no
useful meaning. This means that the data separated by this level no longer share the
same scale. Every chunk with the same meta-information now belongs to the same scale
group.

In the visualization, this is indicated by displaying the icon (“not combinable”) in
the header of the hierarchy level (see Fig. 5.6). An example of not combinable nodes is
the partitioning of the data by the sensors of the underlying dimension, where it makes
no sense to plot a temperature and a voltage value in the same coordinate frame (see
Figs. 5.7a and 5.7b). If the hierarchy levels does not separate the data into different scale
groups the icon (“common scale”) is shown.

However, a level can also separate data into chunks that are comparable with each
other, for example, the partitioning of power consumption time series by their location.
This is indicated with the icon (“no common scale”) in the header (see Fig. 5.7d).
The data chunks are still separated into different scale groups for each meta-information.
However, data chunks with different scale groups that do not have a common scale, but
are combinable (not set to ), can be displayed in the same cell.

Displaying Data Chunks in a Single Cell

The visual representation of a data chunk is always drawable inside a cell if it is the only
one. If multiple chunks have to be shown in the same cell, multiple cases need to be
addressed:
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a

b

c

d

Figure 5.7: The rows a and c show the data chunks of two sensors. The rows b and d
show the combined cells. The hierarchy level Data dimensions is set to on the left
to compare the central tendencies and to on the right to compare the shape of the
distributions.

a b

Figure 5.8: The same data as in Fig. 5.7 is shown. If the nodes of hierarchy level are not
combinable ( ) no visualization can be plotted (a). If the level is set to the position
can be observed (b).

If two levels of the hierarchy are set to not comparable ( ), they cannot share a
common axis and no visualization can be drawn (see Fig. 5.8a). The common idiom
“comparing apples and oranges” states that a non suitable comparison would indicate a
false analogy (see Fig. 5.7b). To avoid this the cell just displays “not combinable”. In
comparison, Fig. 5.8b shows when you display data chunks with different scales on one
scale. The superimposed histograms show two deflections (task T3).

The already shown case is that all data chunks share the same axis and are combinable.
All hierarchy levels that created the chunks have to be set to . Hence only one axis
exists and the input domain and the output range are the same for all statistical properties
of the data. With this setting, it is possible to compare the position of the underlying
data chunks. In Figs. 5.6a and 5.6b the hierarchy level Data dimensions is set to . It
is possible to observe that the distributions of the Air Pressure measurements are similar,
but the central tendency differs. As opposed to this, it is not as easy to compare the
shape of frequency distributions of the different data chunks (task T1).

To be able to compare the shape, the hierarchy level may be set to “no common scale”
( ). Each created node of the level defines its own scale. It is not possible to use the
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same input domain for multiple data chunks with different scales, that are combinable
(not set to ) and displayed inside the same cell. The output range of all these scales
is still the same (the dimensions of the cell), but the input domain of every scale may
now be different. The goal of switching the scales is to compare the shape of the visual
encodings. The visualizations of different scales are drawn independently and are then
put on top of each other. Figs. 5.6c and 5.6d show that the shapes of the frequency
distributions of the different data chunks can now be compared easily.

In Figs. 5.6a to 5.6d the hierarchy level Sensor is always set to . Also, only data
dimensions from the same sensor are shown. In Fig. 5.7a four more data dimensions
of the type Dew Point were added. One can see the histograms of their data chunks
in juxtaposition to each other. It is important not to compare the position of these
distributions, because they do not have a common scale. This becomes clear when the
two cells are displayed in combination (Fig. 5.7b).

However, if the user changes the combination type of the level Sensor from (see
Fig. 5.8a) to (see Fig. 5.7b), he will see the Air Pressure and Dew Point representations
of Fig. 5.7a superimposed. This combination is hard to interpret and illustrates why
“oranges should not be compared to apples”. The user must know the meta-informations
of his data and configure the hierarchy levels accordingly.

For completeness, Fig. 5.8b shows the same data on the same scale. Here one can see
that the central tendencies of the two sensors are very different.
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CHAPTER 6
Addressing the Explorative

Overview Tasks

This chapter describes the used direct interaction techniques to configure the HDO
framework and address the explorative overview tasks.

6.1 Direct Interaction
Direct interaction is the involvement of “a dialog with feedback and control throughout
performance of the task” [Dix09]. Direct interaction uses visual elements to guide the
user to the desired action. The action is achieved by pointing on a visual representation.
Furthermore, this action has to be rapid, incremental, and reversible [AS94]. Well known
examples of direct interaction controls are user interface controls (e.g., buttons) inside a
user interface design, which are constantly visible in the screen space.

Another class of direct interaction controls are only shown on demand. Fig. 6.1 shows
a well known on-demand interaction including a popup menu (Fig. 6.1b) and a popup
window (Fig. 6.1c) [RBH+12]. The HDO framework focuses on interaction techniques
that appear on-demand. The advantages of making this design decision are [Gal07]:

Saving screen space On demand controls enable a more compact design of visualiza-
tions, while maintaining the same functionality, by leaving out screen space filling
controls that encode redundant information.

Within the context of the task Since the control elements appear where they are
able to fulfill an action, the user can reach his goal faster. For example popup
menus as shown in Fig. 6.1b are often also available from other control elements
like complex menu structures.

Reduce redundant information Direct interaction controls, that are always visible
in the interface design, may encode redundant information. An example are input
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a

b

c

Figure 6.1: The figure (a) inside the text editing program Microsoft Word can be
edited on demand by opening a context specific popup menu (b) and a popup window
(c) [RBH+12]

fields that show values, which are also visible in the interface. These redundancy is
not desired when exporting and publishing the interface design (e.g., as a screen
capture). The use of on-demand controls only encodes this redundancy when
displayed, which solves this problem [Few09].

Disadvantages of on demand direct interaction controls are on the one hand the
shallow learning curve, which is caused by the fact that the user has to remember the
location and the trigger action of the controls. On the other hand it is possible that the
user triggers them by accident or popup controls occlude important parts of the screen
working area [Pfa15].

To be able to perform the identified tasks of the users (see Chapter 3), the HDO
framework uses direct interaction controls. To reduce the disadvantages of direct inter-
action controls, it tries to keep the access to the popups consistent. Whenever a user
hovers the mouse over the title area of a column, she or he gets all relevant configuration
options for that column (see Section 6.2). To configure individual cells of a column more
precisely or to learn details, the user receives control elements when hovering over a cell.
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a b

c

d

Figure 6.2: The HDO framework visualizes the time curves (a) and the distributions (b)
of all 163 data dimensions combined by their sensors (c). (d) shows an outlier in the Air
Pressure data

6.2 Explorative Overview Tasks
As a precondition, it is assumed that the domain expert knows what data types, sensors,
and meta-information one can expect from the data. Typically a user does not start his
exploration task with no initial hierarchy, as shown in Fig. 5.3a. A pre-defined set of
hierarchy levels that are relevant in the domain is assigned. Fig. 6.2 visualizes all 163
data dimensions of the sensor data set from the guiding example (see Section 1.1). The
initial hierarchy is defined by the sensors, and the underlying data dimensions, which are
collapsed so that the user is able to get an overview of the data.

To address the goal G1, the user is able to find structures by looking at the visual
summaries (task T1). Example structures that can be observed in Fig. 6.2 are: the yearly
trend of meteorological quantities like the Temperature and the related PV; the modality
of the Gust Direction, which is different for every sensor; the outliers of the data for
example the null value in the Air Pressure distribution and the purity of some groups
like the Global Radiation (task T3).

To support the user in his different tasks with the visual analysis of the data, the
following configuration options are offered for the HDO framework.

• Adding and Removing Columns (Section 6.2.1)

• Drill-down and roll-up concerning Rows (Section 6.2.2)

• Restricting the shown range (Section 6.2.3)
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a b

c

d

Figure 6.3: Interaction controls are displayed on demand in the column header. It is
possible to remove (a) or add (b) columns and open controls to configure the column (c).
One configuration concerns the changing of the mapping of the displayed interval (d).

• Reordering the tabular layout (Section 6.2.4)

6.2.1 Adding and Removing Columns

A column in the tabular layout represents either a hierarchy level or visualizes statistical
properties of the rows of the table (see Section 5.5). The more columns being used, the
more accurately a user can go into individual details in the data. For example in Fig. 5.4
the user is able to analyze the central tendency (median values), the dispersion (IQR),
and the frequency distribution (histograms) of the data chunks. This increases the visual
complexity, but also enables the user to find structures, like the modality of the data
chunks or outliers. Furthermore, the displayable space is limited by the screen. Therefore
it must be possible to add and remove columns on demand.

The direct interaction controls to add or remove the columns are shown on demand
at the header of a column. Fig. 6.3 depicts the displayed on demand controls. Figs. 6.3a
and 6.3b are the buttons to add and remove a column, indicated with a “plus” and
“minus”-icon.

Another already introduced concept is the subdivision of columns into sub-columns
as described in Section 5.5.2 and shown in Fig. 5.5. This enables the user to analyze the
trend and the modality of the data chunks. This subdivision of a column must also be
changeable by the user, which is described in Section 6.2.3.
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a

b

Figure 6.4: In some cases it is not suitable to display all data records in a visualization.
(a) shows a single outlier in the data, which changes the domain range of the data. By
restricting the shown range to a smaller interval (b) details can be observed.

6.2.2 Drill-Down and Roll-Up

To address goal G2, the framework supports the drill-down and roll-up of the hierarchy
nodes as described in Section 5.4 and shown in Fig. 5.3. Whilst exploring the visualizations,
a user may observe that the variance in some displayed nodes is very high, and wants to
drill-down the node to see if the purity of the underlying nodes in the next hierarchy level
increases (task T3). This is achieved by clicking on the arrow inside of the hierarchy node.
Fig. 5.3d shows this drill-down of multiple hierarchy nodes to a detailed representation.

The direction of an arrow indicates to the user if the node is collapsed or expanded.
This is the reason why it is not only displayed on demand, but permanently in the
interface.

Additionally the user is able to refine the hierarchy further, i.e., by adding more
hierarchy levels, by clicking on the plus sign in the lower left corner (Fig. 6.2). The
further refining of the hierarchy may increase the purity of the newly partitioned data
chunks.

6.2.3 Restricting the Shown Range

To address task T4 further, every column can be configured individually. Adjusting the
scaling of a continuous axis to a certain interval is a common interaction technique to
explore the data [YaKS07].

As the visual information seeking mantra proposes, it is necessary to show the user
an overview of the available data. However, after the overview is presented, the user
may be interested in a small part of the axis. Fig. 6.4 illustrates the restriction of the
shown range of a time series. Due to an outlier (Fig. 6.4a, dot in red), the time series is
visualized with visual clutter and it is hard to identify details. By reducing the shown
range (Fig. 6.4b), it is possible to explore the data further and identify hidden structures
(task T1).
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a

b

Figure 6.5: The rearrangement of the order of the hierarchy levels from comparison of
Data dimensions (a) to the comparison of the Years (b) enables the user to analyze
different data chunks in the cells of the data columns.

The HDO framework supports direct interaction techniques that enable the user to
restrict the shown range. The user is able to modify the number of displayed sub-columns
and the shown range of the scale of combinable data-chunks.

Fig. 6.3 shows the header of a column with sub-columns, which displays information
about the shown range of their partitions. In this case the range is a temporal axis
from May 2010 to April 2011. On demand, controls are shown to configure the column.
Configuration options are for example: the number of displayed sub-columns, the omission
of data by using a data filter, or the displayed range of a temporally partitioned column.
The last point is shown in Figs. 6.3c and 6.3d, where the displayed range is changed by
zooming.

To restrict the shown intervals of the axis of combinable data-chunks (see Section 5.5.3),
the user may point to a cell of the tabular layout and the controls similar to the previous
example appear.
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6.2.4 Reordering the Tabular Layout

Tabular layouts are an intuitive way to compare and lookup values [LGS+14]. This
allows the user to connect and relate the displayed visual representations as described in
Section 2.4.

For a human, it is easier to compare representations that are closer to each other [Shn96].
This makes it necessary to interactively rearrange the ordering of the displayed rows and
columns to support the user with this task. The interaction technique, which replaces
the need for additional controls is called Drag and Drop. The user clicks on the header
of a column and holds down the mouse button, while dragging the mouse cursor to the
new position of the column, which is indicated with a blue line as visual feedback of the
new position.

Columns that contain sortable data allow the user a reordering of the rows to a sorted
ascending or descending column sequence. This action is performed by clicking on the
arrows in the header of the column. If an arrow is filled in black, it indicates that this
column is sorted. These controls enable the user to use the HDO framework as an RBFF,
by sorting the columns that compute the desired features of the underlying data chunks.

Additionally the user may change the order of the hierarchy levels, by dragging the
headers to another position. Fig. 6.5 shows the rearrangement of the hierarchy levels.
The comparison of the individual Temperature sensors does not reveal specific structures
in the data chunks (see Fig. 6.5a). By dragging the columns Sensors and Data dimensions
to the end of the hierarchy, the comparison of Years of the underlying sensor data is
possible and a new structure in the data is revealed (Fig. 6.5b).
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CHAPTER 7
Implementation

This chapter describes the implementation process of the HDO framework, from initial
sketches to a working implementation. The final framework was implemented in C++ and
uses OpenGL for rendering. It was implemented as a plugin into an existing framework
called .

7.1 Initial Sketch and Prototypes
The nine-stage design study methodology framework [SMM12], as described in Section 1.4,
suggests designing the visualization before implementing it. For the first discussions of
the used visualization design, sketches were made to communicate the intended results.
Fig. 7.1 shows an early design sketch. The sketch already shows the tabular layout and
some visual encodings that were used in the visualization. This section analyzes which
design decisions did not change and which did change in the development process.

7.1.1 Design Decisions Regarding the Tabular Layout

The design decision of the tabular layout and the drill-down hierarchy (Fig. 7.1a) are
elements that did not change the this early design decision. The shading of nodes on the
same hierarchy level and controls were added for a better overview. Especially if some
rows are collapsed and others are expanded, the shade of the row is an indication of the
depth of their hierarchy level, although for hierarchies with a lot of levels the shade is no
longer a suitable distinguishing feature.

Although other designs were also considered and tested in the early design process,
the design decision of using an icicle-plot like representation of the hierarchy [MR10] as
used in the sketch is also in the final implementation. The visualization design study
Visplause [ASMP17] uses a similar tabular layout and the authors evaluated both the
icicle-plot and the indented layout of hierarchies. The users prefer the indented layout of
hierarchies. The advantage of an indented layout is that the context to the parent node
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a b c

d

Figure 7.1: A sketch of an early design iteration. It shows the data from the guided
example data set (see Section 1.1).

is not lost when expanding a node and that users are familiar with this encoding of a
hierarchy [LGS+14]. An example of this is the folder hierarchy in file browsers.

Fig. 7.2 shows a screenshot of a prototype using an indented layout. The sub-total
row Dew Points encodes the same information as the expanded rows, with an additional
aggregated information. As this row consumes more vertical space than in an icicle-plot
like representation and the additional information was not relevant while exploring the
hierarchy, this design was not used.
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Figure 7.2: A prototype of the HDO framework used an indented layout of the table.
This encoded redundant information and used more vertical space.

a

b

Figure 7.3: The concept of curve box plots [MWK14] is implemented as a column in the
HDO framework for a single node (a) and a combined node (b).

7.1.2 Design Decisions Regarding the Visual Encodings

For example, the use of bars to indicate a central tendency as shown in Fig. 7.1b. Despite
bars being a common technique to visualize values in a table [Mun14], lines are used for
a more intuitive combination in one column. Which is already shown in Fig. 7.1d, where
visual representations are mixed inside one column. In this case vertical bar charts for
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combined data chunks and a horizontal bar for a single data chunk are shown.
The design decision of not mixing visual encodings also affected another considered

visual representation. The concept of curve box plots [MWK14] was implemented as a
column in the HDO framework. Whereby, in one sub-column the IQR is encoded as a
black area and the 0.1 — 0.9 inter percentile range as a gray area. Additionally, the
median is encoded as one line, similar to the line graphs shown in Fig. 5.5a. The mix of
line and area graphs in one visualization may work for a single node, but the concept
of combining multiple nodes (see Section 5.5.3) lead to multiple lines and areas with
different shades.

In the simple case the gray shade of an area (black or gray) encoded a specific range,
but it is no longer possible to visually interpret the grayscale in a combined node and
assign it to a displayed value. By combining several surfaces by superimposition, one can
recognize the boundaries of the underlying surfaces. The previously black areas of the
IQR become gray. This results in losing the overview of which surface represents an IQR
and which the gray 0.1 — 0.9 inter percentile range. Fig. 7.3 shows the implemented
visual representation in a column of the HDO visualization, without the encoding of the
median as a line. It shows that the combination of more than a single shade in one node
(Fig. 7.3a) represents a problem when combining multiple nodes (Fig. 7.3b).

The initial sketch used a color to visualize an aggregated value in the combined
cell and the underlying lines were grayed out (see Fig. 7.1c). Due to two reasons, this
concept was not implemented. On the one hand, the aggregated representation of the
cells in a partitioned column was not realized. This would not be as scalable as the
superimposition method that is currently being used to combine the cells, as additional
calculations would need to be made and additional memory needs to be used. It is also
another representation which, as mentioned above, can be confusing and distracting for
the user. On the other hand, color coding in the visual representations were omitted,
since a cell can currently only be used for quantitative data dimensions. In future work,
however, it is also be conceivable to partition the quantitative data dimensions in a cell
using a categorical data dimension. For this, one would have to use color as a visually
distinguishing feature. Such a cell with multiple categories is shown in Fig. 2.6.

7.2 Visplore as used Visualization Framework
is a visual exploration and model building system developed by the VRVis Research
Center1. It supports a set of analysis tools on multivariate data. One basic supported
visual analytics tool is multiple coordinated views. Fig. 7.4 shows an example of a
visualization setup with multiple views.

The connection and coordination of different visualization techniques is a key concept
of visual analytics. Fig. 7.4a shows the implemented HDO framework integrated in a
Visplore configuration. The framework is currently not linked with other visualizations,
but the advantages of an integration into a visualization system like Visplore are
discussed in Section 9.2.2.

1VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, www.vrvis.at
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7.3. Real-Time Data Exploration

a b

c d

Figure 7.4: An example of multiple connected views in the software Visplore. This
includes the presented HDO framework (a), Histograms (b), Time series (c) and detailed
information (d).

The HDO framework was implemented in , because it implements a multi thread-
ing architecture [PTMB09]. This architecture enables the user to interact with the
visualization in real-time and to receive instant visual feedback.

7.3 Real-Time Data Exploration

The visual feedback of the visualization is in real-time to help the user to explore the data
rapidly and thereby support him to make decisions faster. However, the computational
costs of computing statistical features on high-dimensional data are high. Several
possibilities to achieve real-time capability are utilized. The hierarchy is employed to
compute the results of the measurements on higher levels of it by a bottom-up approach.
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This is, for example, possible for the statistic means of values. Unfortunately, not all
statistics can be calculated by reusing intermediate results from lower levels. For example,
the quantiles of multiple data chunks in an intermediate node of the hierarchy need to
be recalculated by using the data of the combined data chunks.

To support these expensive calculations, the joint computation of results for multiple
dimensions is considered. For example, a data dimension is sorted only once for all
statistical features that need a sorting of subsets of the dimension.

7.4 System Architecture
The visualizations of Visplore implement the previously mentioned multi-threading
architecture. In addition to a main thread, which waits for user input and should therefore
carry out as few calculations as possible, there is a second thread. It performs the time-
consuming calculations and places the resulting visual encoding on the monitor [PTMB09].

Since the calculations of the HDO framework can be very costly, because it is written
for high-dimensional data, it uses another thread. Fig. 7.5 shows the three threads used:

7.4.1 Main Thread

As mentioned above, the main thread (see Fig. 7.5a) waits for input from the user. It
knows which hierarchy is currently set and which data is to be calculated and forwards it
to the appropriate threads.

The example in Fig. 7.5 shows a resize operation on the visualization by the user
(Fig. 7.5d). This new state is passed from the main thread to the data model thread to
recompute the partitioning and to the visualization thread to render the resized table.
These threads are stopped, the new state is set, the dependent calculations are invalidated
and the thread is forced to restart.

7.4.2 Data Model Thread

The data model thread (see Fig. 7.5c) is responsible for the complex calculations of the
HDO framework. As Fig. 7.5 shows, important parts of it are:

• Creating the hierarchy (Fig. 7.5e). This includes the creation and deletion of
hierarchy nodes, depending on the user defined hierarchy.

• Dividing the data into data chunks (Fig. 7.5f).

• Partitioning the data chunks for individual columns of the visualization, like the
histogram or the time series column (see Fig. 7.5g and Section 5.5.2).

• Calculating the statistics (see Fig. 7.5h and Section 5.5.1).

• Creating the cells (Fig. 7.5i) for visualization, while taking the user defined combi-
nation aspects and visual mappings into consideration (see Section 5.5.3).
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Main Thread Visualization Thread Data Model Thread

Text: “Updating”

Set hierarchy and data create hierarchy

hierarchy created

Render Hierarchy
data chunks

Resize

Render Hierarchy
partitions

Resize (changes partitioning)
partitions (again)

statistics

visual representationsfinished
set visible state
render again
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d

e

f

g

h

i

Figure 7.5: Sequence diagram of the three used threads of the HDO visualization. The
main thread (a) waits for the user input (d). The visualization thread (b) renders the
state. The data model thread (c) performs heavy computations (e–i).
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Every part depends on all previous calculations. If a part is invalidated by user
interaction, as for the resize operation in example of Fig. 7.5d, all interdependent parts are
invalidated as well. After the thread starts again, the invalidated parts are recomputed.

As soon as the data model thread calculates a part that can be displayed in the
visualization, this state is forwarded to the visualization thread.

7.4.3 Visualization Thread

To ensure that the displayed information corresponds to the current user input, there is
another thread. The visualization thread (see Fig. 7.5b) takes care of drawing the visual
representations. The elements to be represented are the table, the hierarchy, the cells,
and the direct interaction controls.

This thread uses the current state of the data model to draw these elements. As
described in Section 7.4.2, the data model thread forwards changes as a message to the
visualization thread. As soon as a new message arrives, the current drawing operations
are terminated as quickly as possible, the state is updated and the drawing operations
are restarted.

This allows operations that trigger frequent changes to expensive operations, such as
drawing cells, to create fluid animations. Resizing the hierarchy, as shown in Fig. 7.5, is
an example.
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CHAPTER 8
Evaluation

To show that the design process of the HDO framework was successful and the identified
goals were achieved, a usage scenario was written. First, the data set selected for the
identified user group is presented. Then the possible users are listed and the data is
analyzed using several scenarios.

8.1 Evaluation Data Set — SmartMeter Energy
Consumption Data in London Households

The design process was motivated by the tasks in the energy sector. Grid operators have
two major driving forces to monitor. The first is the power supply from different sources,
which was already presented by the first data set. The possible fields of application were
already pointed out in the thesis (see Section 1.1). The second influencing variable is
the power consumption of the consumers. In order to also deal with this driving forces
and the resulting questions, a further data set from the area of electricity consumption
is presented here. The data set “SmartMeter Energy Consumption Data in London
Households” contains energy consumption measurements from 5,567 London households.
They participated in the UK Power Networks led Low Carbon London project between
November 2011 and February 2014. This open data set was published by the London
City Council and can be downloaded from its homepage [Net15].

Each household was assigned to a A Classification Of Residential Neighbourhoods
(ACORN) group in 2010. The ACORN structure categorizes households into different
social groups based on different factors. Table 8.1 shows the categorizations, which are
used in the data set. ACORN also subdivides the households furthermore into 62 types,
but this level of detail is not available in the data. The data of these analyzed factors
include property prices, company directors, consumer data from lifestyle surveys and
many more. In order to represent the greater London population well, customers were
selected from all groups in a balanced way.
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Table 8.1: The CACI ACORN classifies households into 6 categories and 18 groups.

ACORN Category ACORN Group
Affluent Achievers A Lavish Lifestyles

B Executive Wealth
C Mature Money

Rising Prosperity D City Sophisticates
E Career Climbers

Comfortable Communities F Countryside Communities
G Successful Suburbs
H Steady Neighborhoods
I Comfortable Seniors
J Starting Out

Financially Stretched K Student Life
L Modest Means
M Striving Families
N Poorer Pensioners

Urban Adversity O Young Hardship
P Struggling Estates
Q Difficult Circumstances

Not private Households R Active and Inactive communal
population, without resident

The data set contains the energy consumption in kiloWatt hour (kWh), the unique
household identification, date and time as well as the CACI ACORN group. The measured
values were determined every half hour and contain about 167 million rows.

Within the data set there are two groups of customers. The first is a subgroup
of around 1100 customers who were exposed to Dynamic Time of Use (dToU) energy
prices throughout the 2013 calendar year. The tariff prices were transmitted one day in
advance via the Smart Meter In Home Display (IHD) or an SMS to the mobile phone.
Customers were notified of high (67.20 pence/kWh), low (3.99 pence/kWh), or normal
(11.76 pence/kWh) price signals and the relevant times of the day. The data/times and
the price signal plan are available as part of this data set.

The signals given were designed to be representative of the type of information that
can be used in the future for high renewable generation operation (supply tracking).
Electricity generation from renewable energy sources has a disadvantage for the electricity
supply system. It can vary greatly. This means that the balance between electricity
supply and demand can be disturbed more quickly. Additionally the signals were designed
for testing the potential to use high-price signals to relieve local distribution networks in
times of stress.
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Category Rising Rising Affluent Comfortable
Group D E A F
Test std dToU std dToU

MAC1 MAC2 MAC3 MAC4

0.1 0 0.7 2.3
0.2 2.4 0.7 2.1
0.1 3.2 0.7 1.4
0.3 3.1 0.7 1.3
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Figure 8.1: The shown data table (a) contains the power consumption values of London
households. Meta-information is present on the columns (b) and on the rows (c)

The remaining sample of approximately 4500 customer energy consumption measure-
ments did not fall under the dToU tariff. These customers received a flat rate of 14,228
pence/kWh. They are further noted as the Standard (std) group.

The transformation into the data model of the HDO framework is easy to perform.
Fig. 8.1 shows a small data table as an example. The different household identifications
define the columns (see Fig. 8.1b) of the data table and thus the data dimensions. These
receive two meta-informations to be able to group them. On the one hand they can be
grouped by the CACI ACORN categorization, which has two levels of detail. On the
lower level of detail the category and more specifically the group (see Table 8.1) can
be used for grouping. On the other hand they can be grouped whether the household
belongs to the dToU test group or to the standard group. One row of the table contains
the power consumption measurement of half an hour for all households in kWh (see
Fig. 8.1a). Also meta-informations per data record are stored in the data. The tariff price
category (high, low or normal) shows the current pricing for the customer. Additionally
the acquisition date of the measurement is stored (see Fig. 8.1c).

8.2 Usage Scenario — Visual Analysis with the
Hierarchical Data Overview Visualization

When analyzing data, we assume that the user already has prior knowledge. In addition,
the data has to be already in the data model required by the framework. In the case of
the data in Section 8.1, a data transformation had to be applied to convert the data into
the used data model.

65



8. Evaluation

a b

c

Figure 8.2: The HDO visualization is used to give an overview of the smart meter dataset.
The columns visualize the maximum (Fig. 8.2a) and the Median (Fig. 8.2b) of the power
consumption of the households, which are grouped by the rows (Fig. 8.2c) into the dToU
group and the remaining households (std).

a

b

Figure 8.3: The hierarchy from Fig. 8.2 expanded for the ACORN categories (compare
with Table 8.1). In both figures it can be seen that the households from the dToU group
have a lower median power consumption and lower maximum peaks.

The first question the network operator would like to have answered about this data
set could be: Does switching to Smart Meter devices relieve my network?

This question is relevant for the grid operator, since peak power is the most critical
factor for the power supply. The power grid needs to be dimensioned for this peak power
consumption.

As the visual information seeking mantra makes clear, a good starting point for the
analysis of the table is to get an overview of the households. The visualization with the
HDO framework in Fig. 8.2 shows the households of the dToU group and the remaining
households (std, Fig. 8.2c) in the two lines. In the cells of the table, aggregated statistical
factors of each household are visually encoded. The first column shows the maximum
values (Max, Fig. 8.2a) and the second column shows the medians (Fig. 8.2b). The data
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is mapped from a default domain range to the cell area as described in Section 5.5. This
default domain range is defined to map from the minimum, to the maximum value of
the underlying data. The small white arrows on the right side of the cells of the median
column indicate that the displayed target range was reduced (see Section 6.2.3). This
reduction was applied to omit outliers in the data and limit the visualization to the
distribution of the majority of the data.

At a glance, the grid operator can see that the electricity peaks of the households in
the dToU group are by a quarter lower than those of the remaining households (7.57 vs
10.76 kWh). Also the central value of consumption in the test group was reduced from
0.12 to 0.11 kWh. This visual summary of all data dimensions indicates that the goal
G1 was met.

The next question the network operator may now be interested in is: How much is
the power consumption for the different user groups?

To address this question, the hierarchy can quickly be expanded. In Fig. 8.3 the
hierarchy is expanded for the ACORN categories (compare with Table 8.1). Again, the
user can easily see that in all categories the test group had lower maximum values and
medians. The rows Fig. 8.3a and Fig. 8.3b show that the category “Rising Prosperity”
has the same median.

Furthermore, the analyst might wonder why the median value for the “Rising Prosper-
ity” group in the dToU group is lower than that of the ACORN categories “Comfortable
Communities” and “Financially Stretched”. To analyze this more closely, the analyst
reduces the displayed data dimensions to the dToU group and adds two more statistics
and thereby two columns. In Fig. 8.4 the columns show the median (as before), the
IQR, and the histogram. It is noticeable that the dispersion of the category “Rising
Prosperity” is particularly high (Fig. 8.4a, 0.18 kWh) and also the histogram indicates
multi-modal behavior in comparison to the other categories (Fig. 8.4b). To analyze this
category more closely, the user can expand the hierarchy further and get an overview
of the two ACORN groups “D — City Sophisticates” and “E — Career Climbers” (see
Fig. 8.4c). Some insights can be gained from the visualizations shown. By the smaller
number of lines in the upper cell, one sees that the sample size of group D is smaller
than that of group E. The histogram of the upper row have several modalities. These are
rather outliers, which also produce high dispersion (0.20 kWh). The median of group E
is 0.03 kWh lower than the median of group D. From the histograms and the IQRs can
also see that the households have very different distributions. By further breaking down
the hierarchy, the individual households can now be analyzed more precisely. This shows
that the goal G2 was achieved.

Further analysis could be done by adding one or more columns with a temporal
partitioning. This has been discussed in more detail in Section 5.5.2. In Fig. 8.5c one
sees the aggregated power consumption of the households for each hour of the day. In
Fig. 8.5d one sees the dispersion of the daily curves. Furthermore, it is relevant to
mention that in Fig. 8.5a the separation of data chunks by ACORN categories and groups
were switched from a common scale ( ) to no common scale ( ) (see Section 5.5.3).
This allows the analyst to compare the curves in the cells with each other, but no longer
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a
b

c

Figure 8.4: Statistical properties of the power consumption of the households from the
dToU group. The rows are grouped by the ACORN categories and sorted by the IQR (a).
The category “Rising Prosperity” shows a broad distribution (b) and in (c) the category
is split up into the ACORN groups D and E.

a b

c d

e

Figure 8.5: The columns of the HDO visualization are partitioned by the hours of a day
creating day curves (c) and (d). The curves in the upper Figure are combined with no
common scale ( ) for the ACORN categories and groups (see (a)). The curves of the
lower figures (e) have their own scale

to compare the cells with each other. Again it can be seen that the curves describe very
different power consumptions. One also sees recurring patterns regarding the time of
day. If each curve is displayed with its own scaling (Fig. 8.5e), one can clearly see hourly
patterns in the consumption curves:

• Overnight from 0–5 a.m. there is a phase in which little energy is consumed (with
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Figure 8.6: The power consumption of the households are divided by the tariff and then
grouped by the dToU and std group. One can observe that the IQR and the P-90 are
smaller for all tariffs for the dToU group

a few exceptions in Group E).

• In the morning there are some peaks.

• During the day diverse patterns occur.

• In the evening from 18 p.m. the largest consumption can be measured.

Another question a network operator would like to have answered is: What influence
does the tariff have on the dToU test group?

As shown in Section 8.1 the tariff is a meta-information of the data records. Therefore,
another hierarchy level can be added, which divides the data dimensions again into data
chunks. In Fig. 8.6 the newly added partitioner is shown in the first column. Again, the
network operator can quickly get an overview of the data via the visualizations in the
cells. For example, it is possible to see that there is a reduction of the median for the two
tariffs “Normal” and “High”, but for the tariff “Low” the median consumption stays at
0.11 kWh. The next column computes the 90-Percentile (P-90) of the data chunks. This
is a more robust statistical property than the maximum, because outliers less influence
the value. As one can see, the dToU group has a lower P-90 value for all three tariffs,
which indicates that the power consumption peaks are lower for all tariffs for the dToU
as compared to the std group. This can also be seen in the IQR-column.
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CHAPTER 9
Discussion

This chapter concludes the analysis phase (see Section 1.4.3) of this paper. First, the
evaluation and implementation are critically reviewed. Then, possible extensions are
presented.

9.1 Reflection

9.1.1 Reflection of the Goals

To determine whether the HDO framework has achieved its purpose, the defined goals
for the design (see Section 3.3) were evaluated in a usage scenario (see Chapter 8). This
section looks back at the scenario and draws conclusions whether the goals were achieved.

G1 — Visual Summaries of Groups

In order to determine whether the visual summaries of groups (G1) were meaningful
enough, one must first ask oneself whether the definition of related groups is sufficient.
In the HDO framework these groups were defined by the meta-informations of the data
via the hierarchy levels. Thus, different subdivisions of data chunks could be created in
the usage scenario:

• whether the households are in the dToU group or not (in the std group)

• according to the ACORN hierarchy.

• according to the tariff

In addition, all combinations of these groupings can be achieved. This gives enough
flexibility to create data chunks. Even though, the meta-information has to be present in
the data, if this is not the case, one has to manually define it, which can be cumbersome.
Possible extensions are presented in Section 9.2.1.

71



9. Discussion

The visual summaries of the statistical properties of the data chunks depend on the
statistics used and whether a partitioned column (e.g., time curves, Fig. 8.5e) is considered.
The visualizations can be further adapted by direct interactive configuration possibilities
of the representations. The usage scenario gives an overview of the visualizations through
the Figs. 8.2 to 8.6 shown. In addition, the scenario shows that questions can be solved
by the visual summaries of the groups.

G2 — Flexible Drill-Down and Roll-Up

How the data table of the usage scenario is divided into data chunks and the resulting
flexibility of exploring them, has already been shown in the discussion of the previous
goal. Section 6.2.2 describes the interaction possibilities to expand or collapse a node in
the hierarchy. This principle is used in Fig. 8.4 to analyze a node with a particularly
wide distribution more precisely. The node is drilled-down and the user is able to get an
insight into the distribution of the data chunk (task T3).

Furthermore, one can see in Fig. 8.4a that the rows of the table are sorted by IQRs.
By the possibility of sorting, nodes with a certain feature can be found faster (task T2).
Since both tasks can be fulfilled by the design of the HDO framework, one sees that the
goal G2 was achieved.

G3 — Scalability

Section 1.1 introduces the first data set of PV time series, which has a raw data table
with 163 columns and 8756 rows. The computation time of the shown calculations of the
statistics and rendering the visualizations is lower than one second. This shows that the
HDO framework is usable for data with multiple data dimensions. The guiding example
data set is rather small in contrast to the evaluation data set (Section 8.1). To show the
scalability of the framework the performance of this data is evaluated.

The data set from the usage scenario has 167 million rows and 5.567 columns. The
raw data table of this record is over 1.4 million times larger than the first one. Since the
calculations on this data are much more expensive, a user has to wait up to ten seconds
for calculation results. In order to give the user feedback as fast as possible and to enable
further interactions, the calculations are executed in a thread. This architecture was
introduced in Section 7.4 and the usage scenario showed that it also works for a large
data set.

While computing the statistics of the data chunks the visualization shows the current
progression of the operation as a percentage. To give the user even more feedback than
just the current progress, the calculations could be extended. One possibility would be
to progressively visualize every finished data chunk and not to wait for all calculations
first. If this extension still takes too long, it would be possible not to use all the chunk’s
data for the statistical calculations, but only a subset of it. Only when a first preview
visualization is available, the complete calculation will be done. Thus, the user receives
faster feedback about which results he can expect and can change his configuration early
on.
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9.1.2 Extended Evaluations

The evaluation method used is called usage scenario. It describes a real-world example
of how one would interact with the system. It discusses the steps, events, and/or actions
that occur during the interaction. Although this technique is synthetic and involves only
a hypothetical user, it helps to evaluate the HDO framework.

Empirical studies were proposed for the evaluation of information visualizations [Car08,
LBI+12]. A more detailed evaluation of an information visualization can be conducted
for example by case studies or controlled experiments. In case studies domain experts
use the visualization and then answer questions about it. Due to the complexity and
open-endedness of the analysis of data, however, the evaluation of these studies is difficult.
In controlled experiments one focuses on a few aspects of the analysis, these are then
often made comparable by means of metrics. Such metrics include [WHA07]:

• The number of revisits

• The number of unique discoveries

• Subjective preferences based on log data.

Using such metrics also makes it difficult to obtain quantitative evaluation results.
This is mainly due to the fact that the number of domain-specific users is low. Therefore,
a good extension of the existing evaluation would be a qualitative study like a Case
Study.

9.1.3 Abstractions to other Domains

The HDO framework was designed specifically for time-series data from the energy sector.
However, this concept is by no means limited to this area of application. Not only
analysts in the energy sector need to analyze high-dimensional time-series data. Meta
information is also collected in other domains and can therefore be used flexibly for the
framework.

Experiences with time-series data, to which this framework could be applied, have
already been made with simulation data in the automotive sector, with patient data
in the health sector, and with process data from production engineering through many
years of cooperation with research partners of VRVis. The defined tasks and goals (see
Chapter 3) from this thesis are also present in these domains.

9.2 Future Work

9.2.1 Automatic Separation of Data Chunks

The hierarchy levels of the partitioning of the data table into data chunks used meta-
information on the data dimensions and data records (see Section 5.4). It is possible that
the data set you want to analyze is not sufficient or does not contain any meta-information
at all. This results in losing the ability to subdivide the data table, which is an important
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a b

Figure 9.1: A prototype for the automatic separation of data chunks

feature of the HDO framework. In this case automatic analysis of the data chunks would
be a possibility to support further separation of the data.

Fig. 9.1 shows a prototype of this concept. In Fig. 9.1a the data chunks of three
different sensors are assigned to the HDO framework without a hierarchy level to combine
the data dimensions from the same sensor. Fig. 9.1b shows the same data with a hierarchy
level that separates the data chunks by a hierarchical agglomeration clustering, using the
values of the mean column as a feature vector [JMF99].

9.2.2 Integration in Visplore

In the introduction (see Section 2.2) Keims’s visual information seeking mantra [Kei05]
was presented. The conceptual approach of the HDO framework follows this mantra: We
analyze first by subdividing the data into data chunks show the important by focusing
on visualizing descriptive statistics of the chunks, support to zoom, filter, and analyze
further via the hierarchy and various columns. To display details on demand the
visualization currently supports tooltips showing detailed information while hovering the
visual representations. By integrating the framework into a visual analytics software
Visplore, more methods for more detailed analysis can be applied.

The HDO framework has been developed as a plugin for Visplore as described
in Section 7.2. However, the presented framework is currently not fully connected to
methods that the visual analytics software support. This will be added as future work,
because the integration with these methods will support the user tasks. The integration
into an existing software allows users to use known visual analytics patterns, like brushing
and linking. Additionally the analyst has access to already implemented and well known
information visualizations techniques (e.g., histograms).
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Brushing and Linking

Brushing and linking are interaction techniques used to combine different visualization
methods. The selections (brushing) of data subsets of the single visualizations are reflected
in all other visualizations (linking) [Kei02]. In the context of the HDO framework, a user
may select features if he is interested in a separate visualization. Then he can observe the
computed and visualized descriptive statistics for the selected data subset in the HDO
visualization. Alternatively, a user may select data chunks in the hierarchy to analyze
the data chunks in other visualizations.

Details on Demand

The last part of Keims’s visual analytics mantra is called “Detail on Demand”. The
cells of the table in the HDO framework visualize the data in a concise way. Because of
limited screen space, some information has to be omitted. Visualization elements like
axes, tics, and labels may be useful for some cases, but visualizing every detail can be
impractical [Shn96].

To create the balancing act between displayed information and visual clutter in the
limited available screen space, details are only shown when they are needed. To apply
this pattern to the HDO framework’s tabular display, Visplore would need to display
additional information for special interactions. One way to achieve this would be to
click on a cell in the table and display an extended visualization of the cell next to the
table as a linked view [Kei02]. Examples of such fully configured extended visualizations
can be seen in Fig. 7.4: The expanded histogram cell can be seen in Fig. 7.4b. The
extensions include a bigger display area than the cell, interaction possibilities like filtering
and further details on demand like tooltips. This figure shows the distribution of only
one time series (Dew Point 02 ). It would also be conceivable to combine several time
series of a combined cell.

Combined cells could also be split and displayed side by side (see Fig. 7.4c). In
this figure ten Temperature time series are shown, just as with the cells, the individual
points of the time series are aggregated into partitions and only the aggregated values
are connected to lines. Another possibility to display time series would be to visualize all
single values.

An exploration of the single values is the finest granular detail. In addition to a
time-series representation, another possibility would be the representation as a table.
Fig. 7.4d shows the single values of four data dimensions in a table.
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CHAPTER 10
Conclusion

This thesis describes an HDO framework to efficiently inspect and compare high-
dimensional data. Motivated by the tasks of domain experts in the energy domain,
three design goals are defined for this framework: Visual summaries, flexible interaction,
and the scalability for high dimensional data.

Based on these goals the HDO framework is described, which utilizes meta-information
of the assigned data dimensions to partition the dimensions into data chunks. In a tabular
layout, multiple descriptive statistics of these chunks can be visualized. The interactive
refinement of the displayed rows and the flexible configuration of the columns of the
tabular layout support the interactive exploration tasks of domain experts.

A usage scenario evaluates the design of the framework with a data set of the target
domain in the energy sector. The scenario shows that the approach is appropriate
to address the identified goals. While the design aspects of the HDO framework are
considered as the main contribution, the conceptual approach also follows Keim’s visual
analytics mantra [Kei05]: We analyze first by subdividing the data into data chunks show
the important by focusing on visualizing descriptive statistics of the chunks, support to
zoom, filter, and analyze further via the hierarchy and various columns, and show details
on demand by integrating the visualization into the visual analytics software Visplore.
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highlight them. 9, 86, see also linking
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the hierarchy of the HDO framework. 35, 37, 38, 43–45, 49–53, 55, 69, 71, 73, 74,
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information overload “Information overload occurs when the amount of input to a
system exceeds its processing capacity. Decision makers have fairly limited cognitive
processing capacity.” [SVV99]. 1, 2
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information visualization “Information visualization is the communication of abstract
data through the use of interactive visual interfaces.” [KMSZ06]. 2, 7–10, 12, 14–16,
20, 21, 23, 26, 73, 74

linking The selected data subset from brushing are highlighted in all other visual
representations that contain these data records. 9

Moore’s law “Moore’s Law” predicts the future of integrated circuits. He observed
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represented in a condensed, summarized form due to the aggregation used in the
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The data chunks of the hierarchy level share the same scale. 43, 44, 67, see also
&

The data chunks of the hierarchy level cannot be combined. They do not share the
same scale and can not be rendered in the same cell.. 43–45, see also &

The data chunks of the hierarchy level do not share the same scale. 43–45, 67, 68,
see also &

scientific visualization “The graphical representation of complex physical phenomena
in order to assist scientific investigation and to make inferences that are not apparent
in numerical form.” [Fod02]. 8, 85

view transformation Create views of the visual structures. 10, see also data transfor-
mation & visual mapping

Visplore is a visual analytics software developed by the VRVis. 5, 13, 14, 21, 22, 55,
58–60, 74, 75, 77

visual analytics “Visual Analytics is the science of analytical reasoning facilitated by
interactive visual interfaces.” [Tho05]. xi, 2, 7, 8, 12–16, 19, 21, 23, 58, 74, 75, 77,
79, 86

visual information seeking mantra “Overview first, zoom and filter, then details-on-
demand” [Shn96]. 9, 14, 19, 26, 51, 66, 74

visual mapping Transform data tables into visual structures. 8, 10, see also data
transformation & view transformation
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